Question: Is there six integer numbers a, b, c, d, n, p so that this equation has 6 integer solutions?

I am trying to find six integer numbers a, b, c, d, n, p so that this equation
abs(a*x+b)+abs(c*x+d)+x^2+n*x+p = 0
has 6 integer solutions are 1, 2, 3, 4, 5, 6. I tried
f:=x-> abs(a*x+b)+abs(c*x+d)+x^2+n*x+p;
solve([f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0, f(5) = 0, f(6) = 0], [a, b, c, d, n, p])


This equation has no solution. Is there six integer numbers a, b, c, d, n, p so that this equation has 6 integer solutions?

I have just found one solution is
solve(abs(-2*x+5)+abs(-2*x+9)-x^2+7*x-16 = 0, x);

With Mathematica, I see at here 
https://mathematica.stackexchange.com/questions/212808/find-integers-a-b-c-d-m-n-p-so-equation-has-six-distinct-solutions

Please Wait...