Question: An Integral to be done from 1911

The following spreadsheet contains an integral to be done

in the framework of the Maxwell–Jüttner distribution and therefore date back to 1911

integrale_juttner_primes.mw
 

restart;

with(IntegrationTools):

the following integrand represents the scaling of the Maxwell–Jüttner distribution (1911) in 3D

where x is the Lorentz factor which is equal or greater than 1

integrandx:= x*sqrt(x^2 - 1)*exp(-x);

x*(x^2-1)^(1/2)*exp(-x)

(1)

C:=1/int(integrandx,x=1..infinity);

1/(BesselK(0, 1)+2*BesselK(1, 1))

(2)

pdf:=C*integrandx;

x*(x^2-1)^(1/2)*exp(-x)/(BesselK(0, 1)+2*BesselK(1, 1))

(3)

the above pdf represents the probability density function of the Maxwell–Jüttner distribution

 

DF:=int(C*integrandx,x=1..xx) assuming xx>1;

int(x*(x^2-1)^(1/2)*exp(-x)/(BesselK(0, 1)+2*BesselK(1, 1)), x = 1 .. xx)

(4)

the above DF represents the inert form of the distribution function but the integral at the moment

does not exists

 

 


 

Download integrale_juttner_primes.mw

 

Please Wait...