Question: How to have Maple solve this simple ODE?

The worksheet here shows a couple of failed attempts at coaxing Maple to calculate the general solution of a pretty simple second order ODE.  I have also included the expected solution which I  have calculated by hand.  Perhaps I am missing a key trick.  Any ideas?

The ODE that I am actually interested in is significantly more complex. The one in the worksheet is a much simplified "bare bones" specimen that exhibits the issue that I am facing.

Attempt to solve with Heaviside

restart;

de := diff(u(x),x$2) = Heaviside(x - a)*u(x);

diff(diff(u(x), x), x) = Heaviside(x-a)*u(x)

dsolve fails:

dsolve(de);

u(x) = DESol({diff(diff(_Y(x), x), x)-Heaviside(x-a)*_Y(x)}, {_Y(x)})

Attempt to solve with piecewise

restart;

de := diff(u(x),x$2) = piecewise(x < a, 0, 1)*u(x);

de := diff(u(x), x, x) = piecewise(x < a, 0, 1)*u(x)

dsolve(de);

Error, (in dsolve) give the main variable as a second argument

dsolve(de, u(x));

Error, (in dsolve) give the main variable as a second argument

 

 

The solution is easy to calculate by hand

We just solve the (quite trivial) DE over the intervals x < a and x>a

separately, and patch the two solutions by requiring the continuity

of u(x) and diff(u(x), x) at x = a.  We get

sol := piecewise(x < a,
        x*c[1] + c[2],
        ((a*c[1] + c[1] + c[2])*exp(x))/(2*exp(a)) + ((a*c[1] - c[1] + c[2])*exp(-x))/(2*exp(-a)));

sol := piecewise(x < a, x*c[1]+c[2], (a*c[1]+c[1]+c[2])*exp(x)/(2*exp(a))+(a*c[1]-c[1]+c[2])*exp(-x)/(2*exp(-a)))

Download solving-an-ode.mw

Please Wait...