Question: Could Maple confirm below Mathematica result ?

 Could Maple confirm below Mathematica result (desirably without using the trick of adding 10^-20 to the values of "n") ?
.
 W[n_] := 1/(3 n Sqrt[Pi] Gamma[2 - n] Gamma[2 + n])*2^(-7 - 4 n) (3 256^
  n Gamma[2 - n] Gamma[-(1/2) + 
    n] (8 n (-3 + 5 n + 2 n^2) Hypergeometric2F1[1 - n, 
      2 - n, -2 n, 3/
      4] - (-1 + 
       n) (4 (-4 + 7 n + 2 n^2) Hypergeometric2F1[2 - n, 2 - n, 
         1 - 2 n, 3/4] - (-10 + 3 n + n^2) Hypergeometric2F1[
         2 - n, 3 - n, 2 - 2 n, 3/4])) - 
 9^n Gamma[-(1/2) - n] Gamma[
   2 + n] (8 n (5 + 11 n + 2 n^2) Hypergeometric2F1[1 + n, 2 + n, 
      2 n, 3/4] - 
    3 (1 + n) (4 (4 + 9 n + 2 n^2) Hypergeometric2F1[2 + n, 2 + n,
          1 + 2 n, 3/4] - 
       3 (6 + 5 n + n^2) Hypergeometric2F1[2 + n, 3 + n, 
         2 (1 + n), 3/4])));
 Table[N[W[n + 10^-20], 20], {n, 1, 15}] // Rationalize

 (*{2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, \
 2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306}*)

Please Wait...