Question: "The Basel problem "in Student Basics

I just discoverd today the step solutions for series in Student package 

Now i try to solve this with my own steps here ..

Note: SummationSteps(Sum(1/n^2, n = 1 .. infinity))was not capable to get a closed form?

"maple.ini in users"

(1)

NULL

Euler's Basel Problem
In the Student Basics package, there is a command :

 

SummationSteps

generate steps for evaluating summations

NULL

help("SummationSteps")

The SummationSteps command accepts an expression that is expected to contain summations and displays the steps required to evaluate each summation given.

2024

with(Student[Basics])

 

" restart; with(Student[Basics])"

"maple.ini in users"

 

[CompleteSquareSteps, CurveSketchSteps, ExpandSteps, FactorSteps, FractionSteps, GCDSteps, LCMSteps, LinearSolveSteps, LongDivision, ModuloSteps, OutputStepsRecord, PartialFractionSteps, PowerSteps, PracticeSheet, SimplifySteps, SolveSteps, SummationSteps, TrigSteps]

(2)

Try this out this SummationStepscommand for the Basel problem series  ( p-series example)

SummationSteps(Sum(1/n, n = 1 .. infinity))

"[[,,[]],["&bullet;",,"Apply the P-test on" (1)/(n)", which shows the summation diverges if" p<=1 "for" (&sum;)1/((n)^p)],[,,p=1],["&bullet;",,"Since" 0<1 "and" 1<=1", we get that the summation diverges"],[,,([[(&sum;)(1)/(n)" diverges"]])],["&bullet;",,"We know the summation diverges, so now we should find what it diverges to"],[,,[]],["&bullet;",,"Evaluate sum" (&sum;)1/n],[,,infinity]]"

(3)

Now the Basel Problem from Euler

SummationSteps(Sum(1/n^2, n = 1 .. infinity))

"[[,,[]],["&bullet;",,"Apply the P-test on" (n)^(-2)", which shows the summation diverges if" p<=1 "for" (&sum;)1/((n)^p)],[,,p=2],["&bullet;",,"Since" 1<2", we get that the summation converges"],[,,([[(&sum;)(n)^(-2)" converges"]])]]"

(4)

f := sum(1/n^2, n = 1 .. infinity)

(1/6)*Pi^2

(5)

How do we get this value from Euler ( The Basel Problem)

# Step 1: Define the series f
f := sum(1/n^2, n = 1 .. infinity);

# Step 2: Write the series as a product of terms (1 - 1/p)
g := convert(product(1 - 1/p, p = primes), hypergeom);

# Step 3: Compare with the Taylor series of the sine function
h := series(sin(x), x = 0, 10);

# Step 4: Set up equations between corresponding terms
eq := seq(coeff(h, x, 2*k)/k!, k = 1 .. 5) =
      seq(coeff(g, x, k), k = 1 .. 5);

# Step 5: Solve the equations to find the value of the series
sol := solve({eq, seq(coeff(g, x, k) = 0, k = 6 .. 10)});

# Step 6: Replace x with pi/2 to find the value
sol_pi := subs(x = Pi/2, sol);

# Step 7: Compute the value of the series
value := sol_pi[1][2];

value;

(1/6)*Pi^2

 

1-1/primes

 

series(x-(1/6)*x^3+(1/120)*x^5-(1/5040)*x^7+(1/362880)*x^9+O(x^11),x,11)

 

(0, 0, 0, 0, 0) = (0, 0, 0, 0, 0)

 

Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, rtable, algebraic, relation(algebraic), relation({rtable, algebraic}), {list, set}({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received {0 = 0, (0, 0, 0, 0, 0) = (0, 0, 0, 0, 0)}

 

sol

 

Error, attempting to assign to `value` which is protected.  Try declaring `local value`; see ?protect for details.

 

value

(6)

NULL

Download Het_Basel_Probleem_van_Euler.mw

Please Wait...