Question: Singular vectors of a 2x2 matrix

Hi, I have a very concrete task, which is to find the singular vector associated with the largest singular matrix of the matrix M below. Here, a is an arbitrary complex number, l is of magnitude stritcly less than 1, and k>0. The command 'SingularValues' returns the 2 singular values of M. But when I search for the corresponding singular vectors, there is a bug. Those vectors are the eigenvectors of M*M. When I use the command Eigenvectors, the second argument returned is the 2 by 2 null matrix. And when I use the command eigenvects I have an error message (see below). Anyone could help me to fix this issue please?

Many thanks in advance. 

with(LinearAlgebra); assume(k > 0); assume(abs(l) < 1); M := Matrix(2, 2, {(1, 1) = l-(1-l*conjugate(l))*k, (1, 2) = -a*(1-l*conjugate(l))*k, (2, 1) = 0, (2, 2) = l+(1-l*conjugate(l))*k})

Matrix(%id = 36893488151898158132)

(1)

simplify(SingularValues(M)[1])

(1/2)*(2*(-abs(l)^2+1)*k*(k^2*(abs(l)-1)^2*(abs(l)+1)^2*abs(a)^4+(4*k^2*abs(l)^4+(-8*k^2+4)*abs(l)^2+4*k^2)*abs(a)^2+4*l^2+8*abs(l)^2+4*conjugate(l)^2)^(1/2)+2*k^2*(abs(a)^2+2)*abs(l)^4+4*(-abs(a)^2*k^2-2*k^2+1)*abs(l)^2+2*k^2*(abs(a)^2+2))^(1/2)

(2)

MatrixMatrixMultiply(HermitianTranspose(M), M)

Matrix(%id = 36893488151996380692)

(3)

Eigenvectors(MatrixMatrixMultiply(HermitianTranspose(M), M))

Vector[column](%id = 36893488151975984532), Matrix(%id = 36893488151975984652)

(4)

with(linalg)

eigenvectors(Matrix(2, 2, {(1, 1) = (l-(1-l*conjugate(l))*k)*conjugate(l-(1-l*conjugate(l))*k), (1, 2) = -conjugate(l-(1-l*conjugate(l))*k)*a*(1-l*conjugate(l))*k, (2, 1) = -k*conjugate(a*(1-l*conjugate(l)))*(l-(1-l*conjugate(l))*k), (2, 2) = a*(1-l*conjugate(l))*k^2*conjugate(a*(1-l*conjugate(l)))+(l+(1-l*conjugate(l))*k)*conjugate(l+(1-l*conjugate(l))*k)}))

Error, (in linalg:-eigenvectors) eigenvects only works for a matrix of rationals, rational functions, algebraic numbers, or algebraic functions at present

 
 

``

Download singular_vect_2_by_2_matrix.mwsingular_vect_2_by_2_matrix.mw

Please Wait...