Mariusz Iwaniuk

1481 Reputation

14 Badges

8 years, 194 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are answers submitted by Mariusz Iwaniuk

The problem is Maple can't find Inverse of Laplace Transfom, then

I'm use numerical inverse  Lapalce transfrom Talbot method.

Edited: 2017.11.10.

I'm adding solution with series approximation.

 

Good Luck.

Fractional_differential_equations.mw

Fractional_differential_equations_with_series_approximations.mw

Numerical_Inverse_Laplace_Transform_Talbot_method.mw

for Order =10.

From_MMA.mw

 

 

 

 

integral.mw

Mariusz Iwaniuk

 

eq:=(1/6)*7^(1/2)*6^(1/2)*hypergeom([1/14], [15/14], 1/(1/y0)^(7/3))/(y0^(1/6)*(1/y0)^(1/6))-hypergeom([1/14], [15/14], 1)-1

fsolve(eq, y0 = 1 .. 2)

1.7417148480262249059

answer.mw

curve := [2*t*(3*t^4+50*t^2-33)/(t^2+1)^3, (2*(7*t^6-60*t^4+15*t^2+2))/(t^2+1)^3]

eq := [x = op(1, curve), y = op(2, curve)]

sort(op([2, 1], eliminate(eq, t)), [x, y], ascending)

 

 

 For R>0 and a>0.

((a^(1/2)*ln(1-a+2*(1-R)^(1/2)*(-a-R)^(1/2)-2*R)-I*ln(-(2*I)*a^(1/2)*(1-R)^(1/2)*(-a-R)^(1/2)+(a-1)*R-2*a)+((1/2)*I)*ln(a))*(-1+R)^(1/2)*(-a-R)^(1/2)+(a+R)^(1/2)*(I*ln((2*I)*a^(1/2)*(1+R)^(1/2)*(-a+R)^(1/2)+(a-1)*R+2*a)-a^(1/2)*ln(1-a+2*R+2*(1+R)^(1/2)*(-a+R)^(1/2))-((1/2)*I)*ln(a))*(1-R)^(1/2))/((a+R)^(1/2)*(1-R)^(1/2)*a^(1/2))

 

Copy code and paste to Maple.It should work.

 

integral.mw

 

Mariusz Iwaniuk

Hi

You can use a "prime" from palletes. :)

2D_is_ok..mw

M_Iwaniuk

 

Use a MultiSeries package.

I_Mariusz

Read this :http://www.mapleprimes.com/questions/200812-Error-in-Dsolvenumericbvp-Initial#

Only_5.mw

I_Mariusz

Numerically this integral can be calculated.


See atached file.Numeric.mw

I_Mariusz

f(2)=-pi/2 is a correct answer.See atached file.

 

Maybe You want f(x)=abs(arcsin(1-x)), then f(2)=Pi/2  ,f>0  ?

Answer.mw

I_Mariusz

Yours homework.

PDE.mw

 

First 17 18 19 Page 19 of 19