Mariusz Iwaniuk

1511 Reputation

14 Badges

8 years, 340 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are questions asked by Mariusz Iwaniuk

Hello

The problem is translate Mathematica code to Maple to find  numerical solution using int(numeric).

I have a more complicated example and here I gives a very simplified version.

I use  successive approximations to solve integral-equation with symbolic int it's easy to do,but with numeric int  I'm failed

MMA code:

func[x_, 0] := x
ifunc[0][x_] := x
func[x_?NumericQ, n_Integer] := x + NIntegrate[(x - y)*ifunc[n - 1][y], {y, 0, x}]
ifunc[j_Integer] := ifunc[j] = Interpolation[Table[{x, func[x, j]}, {x, -3, 3, 0.2}]]

Plot[{Sinh[x], ifunc[n][x] /. n -> 4}, {x, -3, 3}]


My first attempt to translate:

ifunc := proc (n, x) options operator, arrow; x end proc;

ifunc(0, x) := x;

func(x, 0) := x;

func := proc (x, n) x+int((x-t)*ifunc(n-1, t), t = 0 .. x, numeric) end proc;

T := proc (j) option remember;

Interpolation:-Interpolate([seq(x, x = -2 .. 2, .1)], [seq(func(x, j), x = -2 .. 2, .1)], method = cubic)

end proc;

plot([sinh(x), (T(4))(x)], x = -2 .. 2);

See attached file for more info.

Thanks.

test_numeric_volterra.mw

EDITED :----------------------------------------------------------

Third attempt:

func(x, 0) := x;

(ifunc(0))(x) := x:

func := proc (x, n) option remember; x+int((x-t)*(ifunc(n-1))(t), t = 0 .. x, numeric) end proc;

ifunc := proc (j) local f; option remember;

ifunc(0) := proc (t) options operator, arrow; t end proc;

f := proc (t) options operator, arrow;

CurveFitting:-Spline([seq(x, x = -3 .. 3, .1)], [seq(func(x, j), x = -3 .. 3, .1)], x, degree = 1) end proc end proc;

n := 4; plot([sinh(x), (ifunc(n))(x)], x = -3 .. 3)# for n=4 diverge !!!

Hello

I want to compute integral with Maple,but returns unevaluated for me.

int((-5*ln(x)^4*Pi^4-20*ln(x)^2*Pi^4-8*Pi^4+120*MeijerG([[0, 0], [1, 1, 1]], [[0, 0, 0, 0, 0], []], x^Pi))/(120*Pi^4*(-1+x)^2), x = 4/10 .. 6/10, numeric);

# ???

Thanks.

Hello

I'd like Maple to return ln(abs(x)) for int(1/x,x) instead of ln(x).

I tried convert MMA code,but I failed.

realIntegrate[f_, x_Symbol] := 
 Simplify[Integrate[f, x] /. Log[expr_] :> Log[Abs[expr]], 
  x \[Element] Reals]; Unprotect[Integrate]; 
Integrate[f_, x_Symbol] /; ! TrueQ[$flag] := 
 Block[{$flag = True}, realIntegrate[f, x]]; Protect[Integrate];

My maple code works only for very simple cases.

REALINT := proc (f, x)

if typematch(int(f, x), ln(y::anything), 's') then

`assuming`([simplify(ln(abs(rhs(s[1]))))], [x in real])

else int(f, x)

end if

end proc;

REALINT(1/x, x);

#ln(abs(x))

REALINT(1/(x+1), x);

#ln(abs(x+1))

REALINT(1/x+1, x);

#x+ln(x) dosen't work.

 

Thanks.

Hello,

I'm trying to solve  inverse trigonometric equation:

EQ := sqrt(3)*arctan(x/sqrt(3))-arctan(x) = 1;

sol := solve(EQ, {x});

#sol := {x = sqrt(3)*tan(RootOf(-tan(sqrt(3)*_Z-1)*sqrt(3)+3*tan(_Z)))}

evalf(sol);

#{x = 13.24164497} OK. one Real solution.

sol2 := evalf(allvalues(sol));

#sol2 := {x = -.1141310781-1.108044977*I}, {x = -.1141310781+1.108044977*I}, # {x = 1.142681884}, {x #= -2.379974990}, {x = 13.24164497}

Check:

seq(evalf(eval(EQ, sol2[k])), k = 1 .. nops([sol2]));

#.99999999991340592650+1.61960960*10^(-11)*I = 1., .99999999991340592650-#1.61960960*10^(-11)*I = 1., .15821278548775934290 = 1., -.4580182246463005988 = 1., #.9999999996233630663 = 1.

1.Can someone explain to me where did Maple find these Additional roots like: {x = 1.142681884}, {x = -2.379974990}?

2.It's a Bug or normal behavior ?

 

I want to calculate and reproduce this question  in Maple.

with(Optimization):

f := (x, y) -> op(1, NLPSolve(sin(a*x*y), a = 1 .. 5));

int(`if`(f(x, y) > 0, 1, 0), [x = 0 .. 1, y = 0 .. 1], numeric);

# 0 

,but I FAIL.

It should give me: 0.922105

 

Thanks.

1 2 3 4 5 6 7 Page 2 of 7