Mariusz Iwaniuk

1571 Reputation

14 Badges

9 years, 198 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are replies submitted by Mariusz Iwaniuk

@acer 

Hello

Can you explain,what is number 5 and 50 in this code below:

{guard::posint:=5,maxtries::posint:=50}

Thanks.

@tschuermann 

I attached MMA notebook if it's useful to you:HeunC.zip

 

@vv 

What is the correct answer, because I'm not sure of my answer for OP ?

@Markiyan Hirnyk 

MMA  11.3 says:

 

Is Mark Viola is wrong with his answer. It has 127K reputation?

 

What is the source of this plot? References ?

Only workaround.Convert to abs or signum(strange two white lines !) also works.

f := max(1, min(x, 2))+max(1, min(y, 2));

f2 := convert(op(1, f), piecewise)+convert(op(2, f), piecewise);

plots:-inequal(f2 <= 3, x = -5 .. 5, y = -5 .. 5, 'nolines');

f3 := convert(op(1, f), abs)+convert(op(2, f), abs);

plots:-inequal(f3 <= 3, x = -5 .. 5, y = -5 .. 5, 'nolines');

f4 := convert(op(1, f), signum)+convert(op(2, f), signum);

plots:-inequal(f4 <= 3, x = -5 .. 5, y = -5 .. 5, 'nolines');

 

@Markiyan Hirnyk 

(* "11.3.0 for Microsoft Windows (64-bit) (March 7, 2018)" *)
    
    sol = Reduce[{4*x1 + 7*x2 + 6*x3 == 186, 
    Floor[(1/2)*x1] + Floor[(1/5)*x2] + Floor[(1/3)*x3] == 18, 
    Floor[(1/5)*x1] + Floor[(1/2)*x2] + Floor[(1/4)*x3] == 21}, {x1, 
    x2, x3}, Reals];
RegionPlot3D[ImplicitRegion[sol, {x1, x2, x3}], MaxRecursion -> 2, PlotPoints -> 10](* ? *)

Gives a empty plot. Maybe user  vv 4397 is right.

2D version:

eq2 = {Floor[(1/2)*x1] + Floor[(1/5)*x2] + 
     Floor[-(2/9)*x1 - (7/18)*x2 + 1/3] - 8 == 0, 
   Floor[(1/5)*x1] + Floor[(1/2)*x2] + 
     Floor[-(1/6)*x1 - (7/24)*x2 + 3/4] - 14 == 0};
sol2 = Reduce[eq2, {x1, x2}, Reals]

RegionPlot[ImplicitRegion[sol2, {x1, x2}]](*Warning !!! MMA eat's RAM Memory. A bug ? *)

RegionPlot[ImplicitRegion[sol2, {x1, x2}], 
 Method -> {"DiscretizationMethod" -> "Symbolic"}, MaxRecursion -> 2, 
 PlotPoints -> 10](*Workaround*)

@VMorsaint 

Extract real solution using remove command witch user Acer mentioned:

sol := [RootFinding:-Analytic(4^x+1-x^4, x, re = -5 .. 10, im = -2 .. 2)]: remove(is, sol, nonreal);

#[2.09401285285812, -1.05356701067272, 3.98972895158790]

Answer looks better if you use  LogicalExpand.

sol = Reduce[{4*x1 + 7*x2 + 6*x3 == 186, 
   Floor[(1/2)*x1] + Floor[(1/5)*x2] + Floor[(1/3)*x3] == 18, 
   Floor[(1/5)*x1] + Floor[(1/2)*x2] + Floor[(1/4)*x3] == 21}, {x1, 
   x2, x3}, Reals] // LogicalExpand

RegionPlot3D[ImplicitRegion[sol, {x1, x2, x3}]]

 

@Carl Love 

Thanks for showing Maple weakness in: inttrans(fourier(piecewise function)).

I need convert twice piecewise function :P

@Preben Alsholm 

Nothing new,Maple leaks  like a sieve.Thanks for info.

@Preben Alsholm 

Thank you for quick fix.  :)

@isifesai 

Code for Maple below 2018 version.

Integro-Eq_Ver_3A.mw

@panke

I edited my answer and works as it should.

First 12 13 14 15 16 17 18 Last Page 14 of 30