1 years, 84 days

## MaplePrimes Activity

### These are replies submitted by Study_U

Tank you very mutch for the attached file!

I didn`t know there was a command for that purpose.

Thank you very mutch! Works perfect!

## Thanks for the other ways!...

Thank you also very mutch for the attachted file and the other ways to do it. As I`m trying to learn Maple a little bit this helps me alot!

You are right. LS would work better. I just wanted to try it this way for hobby/curiosity and I thought it would be a good exercise.

The part which calculates the parameters of the equivalent circuit isn`t programmed yet. This part only should calculate the real and imaginary part of the complex impedance of the whole equivalent circuit. The parameters are calculated in the next step :)

Best

## Thanks!...

Thank you very mutch! That works for me.

## @Carl Love  I would like to use th...

I would like to use them as single values.

For example: Rm= 269.7936047 and Xm=-2080.197188 as separate values.

## restart;with(ListTools);assume(0 < Rm, R...

restart;
with(ListTools);
assume(0 < Rm, Rm, 'real', Xm, 'real');
dB_M := Vector[column](4, [-0.029, -0.6, -11.864, -0.769]);
Phase_M := Vector[column](4, [-1.35, -19.468, -14.33, 9.13]);
Frequency_M := Vector[column](4, [1995, 39811, 100000, 104713]);
[ 1995 ]
[      ]
[39811 ]
Frequency_M := [      ]
[100000]
[      ]
[104713]

Rs := 50;
Uo := (Rm + Xm*I)/(Rs + Rm + Xm*I);
Rm + I Xm
Uo := --------------
50 + Rm + I Xm

buf1 := Vector[column](4, [0, 0, 0, 0]);
[0]
[ ]
[0]
buf1 := [ ]
[0]
[ ]
[0]

for i to 4 do
gl1 := Re(Uo) = Re(evalf(10^(dB_M(i)/20)*exp((2*Phase_M(i)/360*Pi)*I)));
gl2 := Im(Uo) = Im(evalf(10^(dB_M(i)/20)*exp((2*Phase_M(i)/360*Pi)*I)));
solve({gl1, gl2}, {Rm, Xm});
end do;
2     2
Rm  + Xm  + 50 Rm
gl1 := ------------------------- = 0.9963901744
2     2
Rm  + Xm  + 100 Rm + 2500

50 Xm
gl2 := ------------------------- = -0.02348123588
2     2
Rm  + Xm  + 100 Rm + 2500

Warning, solve may be ignoring assumptions on the input variables.
{Rm = 269.7936047, Xm = -2080.197188}

2     2
Rm  + Xm  + 50 Rm
gl1 := ------------------------- = 0.8798980777
2     2
Rm  + Xm  + 100 Rm + 2500

50 Xm
gl2 := ------------------------- = -0.3110353079
2     2
Rm  + Xm  + 100 Rm + 2500

Warning, solve may be ignoring assumptions on the input variables.
{Rm = 4.018482499, Xm = -139.8949743}

2     2
Rm  + Xm  + 50 Rm
gl1 := ------------------------- = 0.2472138520
2     2
Rm  + Xm  + 100 Rm + 2500

50 Xm
gl2 := ------------------------- = -0.06315189011
2     2
Rm  + Xm  + 100 Rm + 2500

Warning, solve may be ignoring assumptions on the input variables.
{Rm = 15.95575026, Xm = -5.533085729}

2     2
Rm  + Xm  + 50 Rm
gl1 := ------------------------- = 0.9036759234
2     2
Rm  + Xm  + 100 Rm + 2500

50 Xm
gl2 := ------------------------- = 0.1452307751
2     2
Rm  + Xm  + 100 Rm + 2500

Warning, solve may be ignoring assumptions on the input variables.
{Rm = 108.5826586, Xm = 239.0999554}

 Page 1 of 1
﻿