janhardo

490 Reputation

9 Badges

10 years, 273 days

MaplePrimes Activity


These are replies submitted by janhardo

From the looks of it, this is amateurish though, because you could create a test server that you could use to create websites.

@Carl Love 
The questioner was talking about ...
I am solving many systems of polynomial equations. 
I had the idea that this Solve Steps could also do that in some output format , but maybe SolveSteps can't do anything with polynomial systems ?
SolveSteps is for systems of inequalities


 

restart;
 

Euler product formula can be written in Maple this way:

eq := Zeta(2) = Product(1/(1 - 1/ithprime(i)^2), i = 1 .. infinity);

evalf(eval(eq, infinity = 10000));

(1/6)*Pi^2 = Product(1/(1-1/ithprime(i)^2), i = 1 .. infinity)

 

1.644934068 = 1.644932811

(1)

but note that Maple cannot use ithprime symbolically.

f:=Product(1-x^2/(k^2*Pi^2), k=1..infinity); # sin(x)/x

Product(1-x^2/(k^2*Pi^2), k = 1 .. infinity)

(2)

eval(diff(f,x,x)/2, x=0);

(1/2)*(Sum(-2*(Product(1, i1 = 1 .. k-1))*(Product(1, i1 = k+1 .. infinity))/(k^2*Pi^2), k = 1 .. infinity))

(3)

C2:=simplify(%); # coeff of x^2 in f

-(Sum(1/k^2, k = 1 .. infinity))/Pi^2

(4)

S2:=coeff(series(sin(x)/x, x), x^2);

-1/6

(5)

isolate(C2=S2, indets(C2, function)[]);

Sum(1/k^2, k = 1 .. infinity) = (1/6)*Pi^2

(6)

 


 

Download 10-3-2025mprimes-linkerlimiet_-aanvulling_-baselprobleem.mw

Give ai the right results ?

@Aixleft math 
 

The proof idea is that set A remains undisturbed and set B is brought into the form of set A

 

A := {(1/6)*Pi+2*k*Pi, Pi-(1/6)*Pi+2*k*Pi}; B := {k*Pi+(1/6)*(-1)^k*Pi}

{(1/6)*Pi+2*k*Pi, (5/6)*Pi+2*k*Pi}

 

{k*Pi+(1/6)*(-1)^k*Pi}

(1)

B_even := eval(B, k = 2*n); B_even_simplified := `assuming`([simplify(B_even)], [n::integer]); B_even_simplified := subs(n = k, B_even_simplified)

{2*n*Pi+(1/6)*(-1)^(2*n)*Pi}

 

{2*n*Pi+(1/6)*Pi}

 

{(1/6)*Pi+2*k*Pi}

(2)

B_odd := eval(B, k = 2*n+1); B_odd_simplified := `assuming`([simplify(B_odd)], [n::integer]); B_odd_simplified := subs(n = k, B_odd_simplified)

{(2*n+1)*Pi+(1/6)*(-1)^(2*n+1)*Pi}

 

{2*n*Pi+(5/6)*Pi}

 

{(5/6)*Pi+2*k*Pi}

(3)

B_combined := `union`(B_even_simplified, B_odd_simplified)

{(1/6)*Pi+2*k*Pi, (5/6)*Pi+2*k*Pi}

(4)

is(A = B_combined)

true

(5)

 


 

Download 9-3-2025-How_to_verify_set_A_and_set_B_is_equivalent_mprimes_def.mw


 

deepseek

 

restart;
with(plots):
with(PDEtools):

# Parameters
assume(a::real, b::real, alpha::real, beta::real, delta::real, mu::real);
assume(k[1]::real, k[2]::real, r[1]::real, r[2]::real, l[1]::real, l[2]::real);
assume(x::real, y::real, z::real, t::real);

a := 1:   b := 0.5:
alpha := 1:  beta := 0.8: delta := 0.6: mu := 1:
k[1] := 1:  k[2] := 2:
r[1] := 0.3:  r[2] := 0.7:

# Correct l[1] and l[2] to ensure real solutions
l[1] := -3:
l[2] := -7:

# Soliton solution components
thetai := k[i]*(t*w[i] + y*l[i] + z*r[i] + x);

# Compute w[i]
eqw := w[i] = (-1 + sqrt(-4*beta*mu*l[i] -4*delta*mu*r[i] -4*mu*k[i]^2 -4*alpha*mu +1))/(2*mu);
w[1] := eval(rhs(eqw), i=1);
w[2] := eval(rhs(eqw), i=2);

# Interaction term Bij
Bij := (i, j) -> simplify(-24*mu/(sqrt(1+(-4*beta*l[j]-4*delta*r[j]-4*alpha)*mu)*sqrt(1+(-4*beta*l[i]-4*delta*r[i]-4*alpha)*mu) -1 + ((2*r[i]+2*r[j])*delta + (2*l[i]+2*l[j])*beta +4*alpha)*mu), size);

# Theta functions
theta1 := eval(thetai, i=1);
theta2 := eval(thetai, i=2);

# Define f
eqf := theta1*theta2 + Bij(1, 2);

# Compute u
f := eqf;
f_x := diff(f, x);
f_xx := diff(f_x, x);
u_expr := (2*f_xx/f - 2*(f_x)^2/f^2);

# Simplify
equ := simplify(convert(u_expr, rational), size);

# Plot 3D solution
p1 := plot3d(eval(equ, [z=0, y=0]), x=-10..10, t=-10..10,
       axes=boxed, grid=[60,60], shading=zhue,
       
       labels=["x", "t", "u(x,t)"], title="Soliton Solution in 3D");

# 2D plot at t=0
p2 := plot(eval(equ, [z=0, y=0, t=0]), x=-10..10,
       color=blue, labels=["x", "u(x,0)"],
       title="Soliton Profile at t=0");

# Contour plot
p3 := contourplot(eval(equ, [z=0, y=0]), x=-10..10, t=-10..10,
       grid=[60,60], coloring=[blue, red],
       labels=["x", "t"],
       title="Contour Plot of Soliton");
 

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)

 

w[i] = -1/2+(1/2)*(-4*k[i]^2-3.2*l[i]-2.4*r[i]-3)^(1/2)

 

.1855654600

 

.1557438525

 

proc (i, j) options operator, arrow; simplify(-24*mu/(sqrt(1+(-4*beta*l[j]-4*delta*r[j]-4*alpha)*mu)*sqrt(1+(-4*beta*l[i]-4*delta*r[i]-4*alpha)*mu)-1+((2*r[i]+2*r[j])*delta+(2*l[i]+2*l[j])*beta+4*alpha)*mu), size) end proc

 

.1855654600*t+x-3*y+.3*z

 

.3114877050*t+2*x-14*y+1.4*z

 

(.1855654600*t+x-3*y+.3*z)*(.3114877050*t+2*x-14*y+1.4*z)+15.07089576

 

(.1855654600*t+x-3*y+.3*z)*(.3114877050*t+2*x-14*y+1.4*z)+15.07089576

 

.6826186250*t+4*x-20*y+2.0*z

 

4

 

8/((.1855654600*t+x-3*y+.3*z)*(.3114877050*t+2*x-14*y+1.4*z)+15.07089576)-2*(.6826186250*t+4*x-20*y+2.0*z)^2/((.1855654600*t+x-3*y+.3*z)*(.3114877050*t+2*x-14*y+1.4*z)+15.07089576)^2

 

2569824663054400/(134915794810356*z^2+(-2698315896207120*y+642456165763600*x+113469951221245*t)*z+642456165763600*x^2+(-6424561657636000*y+219276272237550*t)*x+18567419823575*t^2-1134699512212450*t*y+13491579481035600*y^2+4841194952386360)-2*((13451/19705)*t+4*x-20*y+2*z)^2/(((13573/73144)*t+x-3*y+(3/10)*z)*((17443/55999)*t+2*x-14*y+(7/5)*z)+236387/15685)^2

 

 

 

 

 


 

Download 9-3_-2025_complex_functie_3d_plot_mprimes_.mw

@SSMB 

It also has nothing to do with your assignments in my opinion
By the looks of it, Maple does not succeed in calculating symbolic equilibrium points of the complex function, that leaves numerical ?.

@FZ 
Now with hyperbolic and trigionometric functions the expression becomes larger 

Download vraag_mprimes_7-3-2025veeenvoudig_lineaire_algebra.mw

 

 

 

 

The goal is to implement an expression of a discrete scalar plane-wave solution to the Klein-Gordon equation that makes use of the creation and annihilation operators in the Physics package.

NULL

We don't bother solving the Klein-Gordon equation explicitly. Instead, we just take a solution from literature. This approach is sufficient to show the difficulty in defining the the creation and annihilation operators.

 

Klein-Gordon equation explicitly

 

restart; with(PDEtools); with(Physics); with(Physics[Vectors]); declare(phi(X)); KG_eq := Physics[Vectors]:-`+`(Physics:-`*`(diff(d(x), x), Alembertian(phi(X))), Physics:-`*`(Physics:-`^`(m, 2), phi(X))) = 0; KG_solution := pdsolve(KG_eq, phi(X)); phi_classical := Sum(Physics[Vectors]:-`+`(Physics:-`*`(A[k], exp(-Physics:-`*`(Physics:-`*`(I, k), x))), Physics:-`*`(conjugate(A[k]), exp(Physics:-`*`(Physics:-`*`(I, k), x)))), k); Setup(quantumoperators = {a, ad}); phi_quantum := Sum(Physics[Vectors]:-`+`(Physics:-`*`(Physics:-`*`(Physics:-`*`(sqrt(2), exp(-Physics:-`*`(Physics:-`*`(I, k), x))), a[k]), Physics:-`^`(Physics:-`*`(2, sqrt(Physics:-`*`(V, omega[k]))), -1)), Physics:-`*`(Physics:-`*`(Physics:-`*`(sqrt(2), exp(Physics:-`*`(Physics:-`*`(I, k), x))), ad[k]), Physics:-`^`(Physics:-`*`(2, sqrt(Physics:-`*`(V, omega[k]))), -1))), k); Setup(algebrarules = {%Commutator(a[k], ad[kp]) = KroneckerDelta[k, kp]}); commutator_check := Expand(%Commutator(phi_quantum, phi_quantum)); KG_solution, phi_classical, phi_quantum, commutator_check

phi(X)*`will now be displayed as`*phi

 

`d'Alembertian`(phi(X))+m^2*phi(X) = 0

 

Error, (in pdsolve/info) first argument is not a differential equation

 

Sum(A[k]*exp(-I*k*x)+conjugate(A[k])*exp(I*k*x), k)

 

[quantumoperators = {a, ad}]

 

Sum((1/2)*2^(1/2)*exp(-I*k*x)*a[k]/(V*omega[k])^(1/2)+(1/2)*2^(1/2)*exp(I*k*x)*ad[k]/(V*omega[k])^(1/2), k)

 

[algebrarules = {%Commutator(a[k], ad[kp]) = Physics:-KroneckerDelta[k, kp]}]

 

0

 

KG_solution, Sum(A[k]*exp(-I*k*x)+conjugate(A[k])*exp(I*k*x), k), Sum((1/2)*2^(1/2)*exp(-I*k*x)*a[k]/(V*omega[k])^(1/2)+(1/2)*2^(1/2)*exp(I*k*x)*ad[k]/(V*omega[k])^(1/2), k), 0

(1.1.1)

NULL

restart; with(PDEtools); with(Physics); with(Physics[Vectors]); declare(phi(t, x, y, z)); KG_eq := Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(diff(phi(t, x, y, z), t, t), -(diff(phi(t, x, y, z), x, x))), -(diff(phi(t, x, y, z), y, y))), -(diff(phi(t, x, y, z), z, z))), Physics:-`*`(Physics:-`^`(m, 2), phi(t, x, y, z))) = 0; KG_solution := pdsolve(KG_eq, phi(t, x, y, z)); phi_classical := Sum(Physics[Vectors]:-`+`(Physics:-`*`(A[k], exp(-Physics:-`*`(I, Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics:-`*`(k_t, t), -Physics:-`*`(k_x, x)), -Physics:-`*`(k_y, y)), -Physics:-`*`(k_z, z))))), Physics:-`*`(conjugate(A[k]), exp(Physics:-`*`(I, Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics:-`*`(k_t, t), -Physics:-`*`(k_x, x)), -Physics:-`*`(k_y, y)), -Physics:-`*`(k_z, z)))))), k); Setup(quantumoperators = {a, ad}); phi_quantum := Sum(Physics[Vectors]:-`+`(Physics:-`*`(Physics:-`*`(Physics:-`*`(sqrt(2), exp(-Physics:-`*`(I, Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics:-`*`(k_t, t), -Physics:-`*`(k_x, x)), -Physics:-`*`(k_y, y)), -Physics:-`*`(k_z, z))))), a[k]), Physics:-`^`(Physics:-`*`(2, sqrt(Physics:-`*`(V, omega[k]))), -1)), Physics:-`*`(Physics:-`*`(Physics:-`*`(sqrt(2), exp(Physics:-`*`(I, Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics[Vectors]:-`+`(Physics:-`*`(k_t, t), -Physics:-`*`(k_x, x)), -Physics:-`*`(k_y, y)), -Physics:-`*`(k_z, z))))), ad[k]), Physics:-`^`(Physics:-`*`(2, sqrt(Physics:-`*`(V, omega[k]))), -1))), k); Setup(algebrarules = {%Commutator(a[k], ad[kp]) = KroneckerDelta[k, kp]}); commutator_check := Expand(%Commutator(phi_quantum, phi_quantum)); KG_solution, phi_classical, phi_quantum, commutator_check

phi(t, x, y, z)*`will now be displayed as`*phi

 

diff(diff(phi(t, x, y, z), t), t)-(diff(diff(phi(t, x, y, z), x), x))-(diff(diff(phi(t, x, y, z), y), y))-(diff(diff(phi(t, x, y, z), z), z))+m^2*phi(t, x, y, z) = 0

 

PDESolStruc(phi(t, x, y, z) = f__1(t)*f__2(x)*f__3(y)*f__4(z), [{diff(diff(f__1(t), t), t) = _c[1]*f__1(t), diff(diff(f__2(x), x), x) = _c[2]*f__2(x), diff(diff(f__3(y), y), y) = _c[3]*f__3(y), diff(diff(f__4(z), z), z) = _c[1]*f__4(z)-_c[2]*f__4(z)-_c[3]*f__4(z)+m^2*f__4(z)}])

 

Sum(A[k]*exp(-I*(k_t*t-k_x*x-k_y*y-k_z*z))+conjugate(A[k])*exp(I*(k_t*t-k_x*x-k_y*y-k_z*z)), k)

 

[quantumoperators = {a, ad}]

 

Sum((1/2)*2^(1/2)*exp(-I*(k_t*t-k_x*x-k_y*y-k_z*z))*a[k]/(V*omega[k])^(1/2)+(1/2)*2^(1/2)*exp(I*(k_t*t-k_x*x-k_y*y-k_z*z))*ad[k]/(V*omega[k])^(1/2), k)

 

[algebrarules = {%Commutator(a[k], ad[kp]) = Physics:-KroneckerDelta[k, kp]}]

 

0

 

PDESolStruc(phi(t, x, y, z) = f__1(t)*f__2(x)*f__3(y)*f__4(z), [{diff(diff(f__1(t), t), t) = _c[1]*f__1(t), diff(diff(f__2(x), x), x) = _c[2]*f__2(x), diff(diff(f__3(y), y), y) = _c[3]*f__3(y), diff(diff(f__4(z), z), z) = _c[1]*f__4(z)-_c[2]*f__4(z)-_c[3]*f__4(z)+m^2*f__4(z)}]), Sum(A[k]*exp(-I*(k_t*t-k_x*x-k_y*y-k_z*z))+conjugate(A[k])*exp(I*(k_t*t-k_x*x-k_y*y-k_z*z)), k), Sum((1/2)*2^(1/2)*exp(-I*(k_t*t-k_x*x-k_y*y-k_z*z))*a[k]/(V*omega[k])^(1/2)+(1/2)*2^(1/2)*exp(I*(k_t*t-k_x*x-k_y*y-k_z*z))*ad[k]/(V*omega[k])^(1/2), k), 0

(1.1.2)

phi_quantum := Sum(sqrt(2)*exp(-I*(k_t*t-k_x*x-k_y*y-k_z*z))*a[k]/(2*sqrt(V*omega[k]))+sqrt(2)*exp(I*(k_t*t-k_x*x-k_y*y-k_z*z))*ad[k]/(2*sqrt(V*omega[k])), k)

Sum((1/2)*2^(1/2)*exp(-I*(k_t*t-k_x*x-k_y*y-k_z*z))*a[k]/(V*omega[k])^(1/2)+(1/2)*2^(1/2)*exp(I*(k_t*t-k_x*x-k_y*y-k_z*z))*ad[k]/(V*omega[k])^(1/2), k)

(1.1.3)
 

 

Download afleiding_oplossing_pde_Klein-Gordon_equation_2-3-2025_mprimes.mw

Unfortunately,  not yet been able to get a dynamically generated timestamp for a 2 lump wave soliton in a contour plot.
However, adjustable axes are possible in the procedure
 The further the 2-lumps evolve in time , it seems like they become 1 lump solitons ?  


 

restart;
with(PDEtools):
with(plots):
declare(u(x, y, t), quiet);

# Parameters
a[1] := -1:
b[1] := -2:
a[2] := -2/3:
b[2] := -1:
alpha := 1:
beta := 1:

# Definitie van de 2-lump oplossing
u_expr := -2*((9/65 - 18*I/65)*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x) + (9/65 + 18*I/65)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x) + (7933424/1891125 + 36508832*I/1891125)*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x) + (6/65 + 9*I/65)*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x) + (6/65 - 9*I/65)*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x) + (8059833/1092650 - 84073113*I/2185300)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x) + (7933424/1891125 - 36508832*I/1891125)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x) + (8059833/1092650 + 84073113*I/2185300)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x))/(9*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x)/65 + (27783/1625 - 11619*I/1625)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x) + 135*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x)/52 + (74331/109265 + 118467*I/109265)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x) + (74331/109265 - 118467*I/109265)*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*((-2/3 + I)*t + (5/9 + 4*I/3)*y + t + (2/3 - I)*x) + 26*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*((-1 + 2*I)*t + (3 + 4*I)*y + t + (1 - 2*I)*x)/45 + (27783/1625 + 11619*I/1625)*(-(1 + 2*I)*t + (3 - 4*I)*y + t + (1 + 2*I)*x)*(-(2/3 + I)*t + (5/9 - 4*I/3)*y + t + (2/3 + I)*x) + 126229597/50430):

# Trajectorieën
eq1 := y = -beta/((a[1]^2 + b[1]^2)*alpha + 2*a[1]*beta)*(x - (sqrt(3)*sqrt(-a[1]*beta*(a[1]^2 + b[1]^2)^3)/(beta*(a[1]^2 + b[1]^2)*b[1]))):
eq2 := y = -beta/((a[2]^2 + b[2]^2)*alpha + 2*a[2]*beta)*(x - (sqrt(3)*sqrt(-a[2]*beta*(a[2]^2 + b[2]^2)^3)/(beta*(a[2]^2 + b[2]^2)*b[2]))):

MultiLumpPlot2 := proc(tijden::list, kleuren::list, x_range::list, y_range::list, custom_grid::list := [100, 100])
    local contourplots, tijd, i, trajectory_plot1, trajectory_plot2, all_plots, x_min, x_max, y_min, y_max;
    
    x_min, x_max := op(x_range);
    y_min, y_max := op(y_range);
    
    contourplots := [seq(contourplot(eval(u_expr, t = -tijden[i]), x = x_min .. x_max, y = y_min .. y_max, contours = 30, color = kleuren[i], grid = custom_grid, transparency = 0.1), i = 1 .. nops(tijden))];

    trajectory_plot1 := implicitplot(eq1, x = x_min .. x_max, y = y_min .. y_max, color = magenta, thickness = 2);
    trajectory_plot2 := implicitplot(eq2, x = x_min .. x_max, y = y_min .. y_max, color = black, thickness = 2);
    
    return display(op(contourplots), trajectory_plot1, trajectory_plot2, labels = ["x", "y"], scaling = constrained, size = [1200, 800]);
end proc:

MultiLumpPlot2([300], ["blue"], [-200, 200], [-100, 100]);

 

MultiLumpPlot2([100, 200, 300,500, -100, -200,-300 ], ["red", "green", "blue", "black", "red", "green", "blue"], [-350, 350], [-350, 350]);#

 

 

 


 

Download 2-_lump_wave_assenbereik_2-3-2025_mprimes.mw

could be correct, checking time positions


 

" i want do it without textplot in the file tester" 
I am sorry  i don't know yet a solution for text  and is different coding than for a 1 lump soliton.
I must try out different methods ..

@Arya-S-AA 
 

restart;
with(plots):

a := -1;
b := -2;
alpha := 1;
beta := 1;
vx := -3/5;
vy := 1/5;
trajectory_slope := vy/vx;
x0 := 0;
y0 := trajectory_slope*x0;

U := (x, y, t, a, b, alpha, beta) -> 4*beta*((y*a - 2*alpha*t + x)*b^2 + a*(-2*beta*t + a*(y*a - 2*alpha*t + x))*b^2)/
(-b^6*beta*y^2 + (-4*t*y*beta^2 + (-2*a^2*y^2 + (4*alpha*t - 2*x)*a*y - 4*(alpha*t - 1/2*x)^2)*beta + 3*a)*b^4 + 
(-4*t^2*beta^3 + 4*a*t*(y*a - 2*alpha*t + x)*beta^2 - a^2*(y*a - 2*alpha*t + x)^2*beta + 6*a^3)*b^2 + 3*a^5);

MultiLumpPlot := proc(tijden::list, kleuren::list, custom_grid::list := [500, 500]) 
    local contourplots, tijd, pos_shift, xmin, xmax, ymin, ymax, trajectory_plot, text_labels, all_plots, i; 
    
    contourplots := []; 
    text_labels := []; 
    
    if nops(tijden) <> nops(kleuren) then 
        error "Het aantal kleuren moet gelijk zijn aan het aantal tijdstippen."; 
    end if; 
    
    xmin := infinity; xmax := -infinity; 
    ymin := infinity; ymax := -infinity; 
    
    for i to nops(tijden) do 
        tijd := tijden[i]; 
        pos_shift := [x0 + vx*tijd, y0 + vy*tijd]; 
        
        xmin := min(xmin, pos_shift[1] - 30); 
        xmax := max(xmax, pos_shift[1] + 30); 
        ymin := min(ymin, pos_shift[2] - 30); 
        ymax := max(ymax, pos_shift[2] + 30); 
        
        contourplots := [op(contourplots), 
            contourplot(eval(U(x - pos_shift[1], y - pos_shift[2], 0, a, b, alpha, beta)), 
                        x = xmin .. xmax, y = ymin .. ymax, 
                        contours = 40, color = kleuren[i], grid = custom_grid, transparency = 0.05)];
        
        text_labels := [op(text_labels), 
            textplot([pos_shift[1], pos_shift[2] + 3, cat("t=", round(tijd)), 
            'font' = ["Arial", 12, 'bold']])];  # Hier wordt tijd afgerond
    end do; 
    
    trajectory_plot := implicitplot(y = trajectory_slope*x, x = xmin .. xmax, y = ymin .. ymax, color = black, thickness = 2); 
    
    all_plots := display(op(contourplots), trajectory_plot, op(text_labels), 
                         title = "1-Lump Soliton waves", 
                         labels = ["x", "y"], scaling = constrained, 
                         view = [xmin .. xmax, ymin .. ymax]); 
    
    return all_plots; 
end proc:

MultiLumpPlot([-100, 200, 0, 100], ["blue", "green", "purple", "red"], [100, 100]);    

@Arya-S-AA 
This is a 1 lump soliton code :from line-with-t-test.mw
What exactly do you want to write down in this plot ?
Note : the title of the plot should be corrected to 1-lump soliton

@salim-barzani 
I don't know what the availability is worIdwide for the two ai platforms ?
I use a paid chatgpt of 20 usd per month.  

1 2 3 4 5 6 7 Last Page 1 of 63