minhthien2016

355 Reputation

6 Badges

7 years, 244 days

MaplePrimes Activity


These are questions asked by minhthien2016

How can I find Mean, Median, Quartiles, Variance, StandardDeviation of data in this table

I use Mathamatica and get the result

Clear["Global`*"]
boundaries = Range[0, 10, 5/2];
frequencies = {18, 11, 13, 6};
binMeans = Mean /@ Partition[boundaries, 2, 1];
weighted = WeightedData[binMeans, frequencies];
weightedHist = HistogramDistribution[weighted, {5/2}];
Through[{Mean, Median, Quartiles, Variance, StandardDeviation}[
  weightedHist]]

I see here 
https://mathematica.stackexchange.com/questions/306634/how-can-i-use-dihedralangle-to-get-correct-result/306638?noredirect=1#comment751373_306638

Let $S.ABCD$ be a pyramid, $ABCD$ is a square with $AB = 1$. The line $SA$ perpendicular to the plane $ABC$. 

Calculate dihedral angle of two halfplanes `SBC` and `SCD` if: $SA = 1$, $SA = \dfrac{\sqrt{2}}{2}$.  I tried
restart;
with(Student:-MultivariateCalculus);
a := 1;
h := 1;
pA := [0, 0, 0];
pB := [a, 0, 0];
pC := [a, a, 0];
pD := [0, a, 0];
pS := [0, 0, h];

How to get remainder of this two polynomials?

with(Algebraic);
Remainder(a*x^3 + b*x^2 + c*x + d, 3*a*x^2 + 2*b*x + c, x);

I see this question https://mathematica.stackexchange.com/questions/304317/how-to-draw-a-number-of-circles-inscribed-in-a-square-so-that-the-sum-of-the-rad

I have a square with length of side is $a$. How to draw a number of circles inscribed in a square so that the sum of the radii of the circle is greatest? In the below picture is twenty circles inscribed in a square. We can consider number of circles are 5, 6, ... We consider number of the circles is fixed.

How can I tell Maple to do that.

At here https://mathematica.stackexchange.com/questions/297104/how-can-i-convert-a-list-containing-three-points-and-its-equation-passing-three is discussing about "How can I convert a list containing three points and its equation passing three points to text file?" With mylist

mylist := [[[-12, 2, -1], [-11, 1, -5], [-10, -2, 3], 10*x + 6*y + z + 109 = 0], [[-12, 2, -1], [-11, 1, -5], [-10, 6, 3], 2*x - 2*y + z + 29 = 0], [[-12, 2, -1], [-11, 1, -5], [-9, 5, -7], 3*x - y + z + 39 = 0]]

How can I get the LaTeX file like this?

\documentclass[12pt,a4paper]{article}
\usepackage[letterpaper,margin=1.2in]{geometry}
\usepackage{enumitem}
\begin{document}
\begin{enumerate}[label=\arabic*)]
\item $A(-12; 2; -1)$,\quad $B(-11; 1; -5)$,\quad $C(-10; -2; 3)$,\quad $(P) : 10 x+6 y+z+109=0$
\item $A(-12; 2; -1)$,\quad $B(-11; 1; -5)$,\quad $C(-10; 6; 3)$,\quad $(P) : 2 x-2 y+z+29=0$
\item $A(-12; 2; -1)$,\quad $B(-11; 1; -5)$,\quad $C(-9; 5; -7)$,\quad $(P) : 3 x-y+z+39=0$
\end{enumerate}
\end{document}


 

1 2 3 4 5 6 7 Last Page 1 of 16