mz6687

35 Reputation

3 Badges

1 years, 228 days

MaplePrimes Activity


These are questions asked by mz6687

Why Maple return 0 when I try to find coefficients of different power of lambda's.coeff.mw

how to determine lambda, m0, and n0? a_i, and c_i are constants and c^2 = c[1]^2 + c[2]^2. solA.mw

I am trying to load the third-party package 'CPC Program Library (qub.ac.uk)' by following the instructions as in 'how to install wkptest? - MaplePrimes'. But encounter with Errors: '

Error, `:` unexpected
with(wkptest);
Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received wkptest

restart:

sourcefolder:=cat(kernelopts('C:\Users\ahmed\Downloads\adty_v1_0'),"/wkptest");
installfolder:=cat(kernelopts('homedir'),"/maple/toolbox/wkptest/lib");
FileTools:-MakeDirectory(installfolder, 'recurse'=true);
libraryfile:=cat(installfolder,"/wkptest.mla");
try
  FileTools:-Remove(libraryfile);
catch:
end try:
LibraryTools:-Create(libraryfile);
libname:=libraryfile,libname;
read cat(sourcefolder,"/wkptest_cpc");

Error, `:` unexpected

 

with(wkptest);

Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received wkptest

 
 

 

Download exam_wkptest1.mws

How to convert this set of PDEs into ODEs? PDEs.mw

When I try to solve the determinant the system hangs and Maple doesn't give any result. Here $\lambda_1,2$ is not a function of 'x' and 't'.

restart

with(LinearAlgebra)

with(plots)

with(Physics)

``

Setup(mathematicalnotation = true)

[mathematicalnotation = true]

(1)

assume(x::real); assume(t::real); assume(`α__1`::real); assume(`α__2`::real); assume(nu::real)

alias(v = v(x, t))

v

(2)

``

B1 := Matrix([[exp(I*v__11)/(`λ__1`-conjugate(`λ__1`)), 0, 0, 0, exp(I*v__12)/(`λ__2`-conjugate(`λ__1`)), 0, 0, 0], [0, exp(I*v__11)/(`λ__1`-conjugate(`λ__1`)), 0, 0, 0, exp(I*v__12)/(`λ__2`-conjugate(`λ__1`)), 0, 0], [0, 0, exp(-I*v__11)/(`λ__1`-conjugate(`λ__1`)), 0, 0, 0, exp(-I*v__12)/(`λ__2`-conjugate(`λ__1`)), 0], [0, 0, 0, exp(-I*v__11)/(`λ__1`-conjugate(`λ__1`)), 0, 0, 0, exp(-I*v__12)/(`λ__2`-conjugate(`λ__1`))], [exp(I*v__21)/(`λ__1`-conjugate(`λ__2`)), 0, 0, 0, exp(I*v__22)/(`λ__2`-conjugate(`λ__2`)), 0, 0, 0], [0, exp(I*v__21)/(`λ__1`-conjugate(`λ__2`)), 0, 0, 0, exp(I*v__22)/(`λ__2`-conjugate(`λ__2`)), 0, 0], [0, 0, exp(-I*v__21)/(`λ__1`-conjugate(`λ__2`)), 0, 0, 0, exp(-I*v__22)/(`λ__2`-conjugate(`λ__2`)), 0], [0, 0, 0, exp(-I*v__21)/(`λ__1`-conjugate(`λ__2`)), 0, 0, 0, exp(-I*v__22)/(`λ__2`-conjugate(`λ__2`))]]); H := Matrix([[H__11, H__12, H__13, H__14, H__15, H__16, H__17, H__18], [H__12, H__11, H__14, H__13, H__16, H__15, H__18, H__17], [H__13, H__14, H__33, H__34, H__17, H__18, H__55, H__38], [H__14, H__13, H__34, H__33, H__18, H__17, H__38, H__55], [H__15, H__16, H__17, H__18, H__11, H__12, H__13, H__14], [H__16, H__15, H__18, H__17, H__12, H__11, H__14, H__13], [H__17, H__18, H__55, H__38, H__13, H__14, H__33, H__34], [H__18, H__17, H__38, H__55, H__14, H__13, H__34, H__33]]); B := H.B1; idn8 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]])

Omeg := B+idn8

``

vvalue := {v__11 = (conjugate(`λ__1`)-`λ__1`)*x+(4*`α__1`*(conjugate(`λ__1`)^3-`λ__1`^3)+2*`α__2`*(conjugate(`λ__1`)^2-`λ__1`^2)-8*nu*(conjugate(`λ__1`)^4-`λ__1`^4))*t, v__12 = (conjugate(`λ__1`)-`λ__2`)*x+(4*`α__1`*(conjugate(`λ__1`)^3-`λ__2`^3)+2*`α__2`*(conjugate(`λ__1`)^2-`λ__2`^2)-8*nu*(conjugate(`λ__1`)^4-`λ__2`^4))*t, v__21 = (conjugate(`λ__2`)-`λ__1`)*x+(4*`α__1`*(conjugate(`λ__2`)^3-`λ__1`^3)+2*`α__2`*(conjugate(`λ__2`)^2-`λ__1`^2)-8*nu*(conjugate(`λ__2`)^4-`λ__1`^4))*t, v__22 = (conjugate(`λ__2`)-`λ__2`)*x+(4*`α__1`*(conjugate(`λ__2`)^3-`λ__2`^3)+2*`α__2`*(conjugate(`λ__2`)^2-`λ__2`^2)-8*nu*(conjugate(`λ__2`)^4-`λ__2`^4))*t}

B2 := Determinant(B)

Omegdet := Determinant(Omeg)

NULL

NULL

Download determinant.mw

1 2 Page 1 of 2