I get slighlty different result from that shown.
f:=t->862.979774+1825.011621/((1+1.54943476*e^(-677.0138344*t))^(131537/203808));
convert(f(t),rational)

Copied the integrand to Mathematica and it gives

Copied the result from Mathematica back to Maple
expr:=`(1450669*t)/
1681 + (4459704101248*
Hypergeometric2F1[131537/203808, 1, 335345/203808,
(36887*E^((342569*t)/506))/(57154 +
36887*E^((342569*t)/506))])/
(1067737900495*(1 + 57154/(E^((342569*t)/506)*36887))^(131537/
203808))`;
maple_expr:=MmaTranslator:-FromMma(expr);
lprint(maple_expr);
1450669/1681*t+4459704101248/1067737900495*hypergeom([131537/203808, 1],[335345
/203808],36887*exp(342569/506*t)/(57154+36887*exp(342569/506*t)))/(1+57154/
36887/exp(342569/506*t))^(131537/203808)

Compare to answer by Axel
Here is plot on top of each others, which shows some difference. I am not sure which is the correct one
Axel:=2.695678478*hypergeom([1., 1., 1.645396648],[2., 2.],-1.549434760*exp(-677.0138340*t))*exp(-677.0138340*t)+.95671881+1887.991395*t;
plot([maple_expr,Axel],t=-0.01 .. 0.01)
