Alexey Ivanov

## 17 Badges

12 years, 73 days

## Using print...

Yuri Nikolaevich, using  print() suit you?
PRICONV.mw

## Numerically for the curve given any kind...

Numerically for the curve given any kind of equations. With geom3d  you construct the plane equation for any three points of the curve that does not lie on one line. In a cycle of successively take point of the curve, substitute them in the equation of the plane and monitor the absolute value of the discrepancy.

## Many choices...

Many choices
on the same basis.
PAR.mw

## Another very simple way...

restart:
a := [x+1, x+2, x+3, x+4];
a := convert(a, set);
a :=minus(a, {x+2});
a := convert(a, list);

## And so removed...

restart;
a := [x+1, x+2, x+3, x+4];
a := subs(x+2 = NULL, a);
nops(a);
op(2, a);

## May be pointplot with style=line?...

restart: with(plots):
t := [1, 2, 3];
f(t[1]) := [3, 4]; f(t[2]) := [11, 12]; f(t[3]) := [41, 1];
pointplot([f(t[1]), f(t[2]), f(t[3])], color = RGB(7, .3, 4), style = line, symbol = solidcircle, thickness = 5);
pointplot3d([1, op(f(t[1])), 2, op(f(t[2])), 3, op(f(t[3]))], color = RGB(7, .3, 4), style = line, symbol = solidcircle, thickness = 5);

## combine...

combine(-ln(x)+ln(y), symbolic);

## So normal?...

restart;
f := x1^2/(x2^3*x3^2);
op(1, op(2, f))^sign(op(2, op(2, f)));
op(1, op(3, f))^sign(op(2, op(3, f)));
f := algsubs(1/x2 = x2b, f);
f := algsubs(1/x3 = x3b, f);

## I think so...

restart;

(diff(f(x), x))/(diff(ln(x), x));

for example:

restart;

f := sin(x);

(diff(f, x))/(diff(ln(x), x));

## The Draghilev method....

Skeptik18(_for_d1.mw

For a start point “a” = 0.5 any number of solutions. It depends on the "smax".

1, [(0.8013209420000008)], 2.70183810879842667*10^-8

2, [(1.0938038328000006)], 1.75716205141895898*10^-7

3, [(1.5165511908)], 3.19181676505797540*10^-8

4, [(1.9061358998000002)], 4.58627091859398206*10^-9

5, [(2.1833650214000007)], 4.36816931514982798*10^-8

6, [(2.5877177300000005)], 1.71876049503971729*10^-7

7, [(2.937538889999998)], 9.29630750157173224*10^-9

8, [(3.219756611999996)], 2.01128799837135830*10^-7

9, [(3.6180527559999964)], 4.55144026911824540*10^-8

10, [(3.953152181999997)], 3.39347172584325562*10^-8

11, [(4.239272189999994)], 2.57192325658905930*10^-7

12, [(4.635025125999992)], 3.01111789280383846*10^-7

13, [(4.962516473999992)], 9.20600748965938465 10^-8

14, [(5.2514410039999975)], 2.19850920579744980*10^-7

15, [(5.645899321999999)], 1.82685308214303177*10^-7

16, [5.968760335999992)], 2.30153605063065925*10^-8

17, [6.2597571959999945)], 2.33606770816408017*10^-7

18, [(6.653469225999989)], 1.16942534766906194*10^-7

19, [(6.97322109999999)], 7.71696275769784279*10^-8

20, [(7.265801703999997)], 4.86139439814792240*10^-8

21, [(7.659044969999998)], 4.08131656026711200*10^-7

22, [(7.976567196000005)], 6.48611420128730742*10^-8

23, [(8.270394148000008)], 1.66075897922723926*10^-7

24, [(8.663323925999999)], 2.60858493916771295*10^-7

25, [(8.979170028)], 7.82206077687419565*10^-8

26, [(9.274002000000005)], 1.76298078358172460*10^-8

27, [(9.666711878000001)], 5.96099682503847818*10^-7

28,[(9.981252484)], 2.84982932807764656*10^-8

29, [(10.276911416000011)], 2.49167541710448860*10^-7

...

The Draghilev method. Read, for example: http://www.mapleprimes.com/posts/145360-The-Dragilev-Method-1-Some-Mathematical

## Digits......

restart;
Digits := 30; 2^29.403243784;

## You can try a custom print on the condit...

For example:

restart:
nn := nextprime(10^100); zz := 1;
for ii from 0 to 100000 do zz := `mod`(zz^2+1, nn); if `or`(ii > 99997, zz = 66388502) then print("ii=", ii, "zz=", zz) end if end do:

## Numerical solution...

Blue - the denominator sin(x+(1/3)*Pi-theta) = 0.
theta, I think, has a period of Pi, and x has a period of Pi / 3. The solution is obtained by Draghilev method. This numerical solution of ordinary differential equations with initial conditions theta (0) = 0, x (0) = Pi / 3.

METHOD(n-1)2d.mw

## All real solutions for any real value of...

MaplePrime.mw

This way you get all the real solutions for any real value of any parameter for the polynomial

equations N * N.

## The Draghilev method...

The Draghilev method to find all the points of zero and Pi/2 slope of an implicit function f(x1,x2)=0 while driving along the section of the line connected.

Example solution of equation and searching of all the points of zero and Pi/2 slope (with animation):

x1^3+x2^3-0.1e-1*sin(1.00001*x1+x2)=0;

D__LIST0.mw

 1 2 3 4 5 6 Page 5 of 6
﻿