pik1432

245 Reputation

6 Badges

5 years, 143 days

MaplePrimes Activity


These are questions asked by pik1432

Hello there, 

This is another issue, associated with substitution. In the following Maple expressions, I tried to substitutte the denominator of 'eq_K1_m4' in order to make it as 'eq_K1_m4_desired', but did not get any success (yet). 

Therefore, would you have a look at this issue to see if the intended goal can be achieved?

restart;

with(LinearAlgebra):

with(DynamicSystems):

interface(imaginaryunit=j):

eq_K1_m4 := K__1 = E__q0*(R__T*E__B*sin(delta) + X__Td*E__B*cos(delta))/(L__aqs*L__l + L__aqs*X__E + L__aqs*L__ads_p + L__l^2 + 2*L__l*X__E + L__l*L__ads_p + R__E^2 + 2*R__E*R__a + R__a^2 + X__E^2 + X__E*L__ads_p) + (X__q - X__dp)*i__q0*(X__Tq*E__B*sin(delta) - R__T*E__B*cos(delta))/(L__aqs*L__l + L__aqs*X__E + L__aqs*L__ads_p + L__l^2 + 2*L__l*X__E + L__l*L__ads_p + R__E^2 + 2*R__E*R__a + R__a^2 + X__E^2 + X__E*L__ads_p);

K__1 = E__q0*(R__T*E__B*sin(delta)+X__Td*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)+(X__q-X__dp)*i__q0*(X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)

(1)

eq_K1_m4_desired := K__1 = E__q0*(R__T*E__B*sin(delta) + X__Td*E__B*cos(delta))/Dx + (X__q - X__dp)*i__q0*(X__Tq*E__B*sin(delta) - R__T*E__B*cos(delta))/Dx;

K__1 = E__q0*(R__T*E__B*sin(delta)+X__Td*E__B*cos(delta))/Dx+(X__q-X__dp)*i__q0*(X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/Dx

(2)

eq_Dx := Dx = L__aqs*L__l + L__aqs*X__E + L__aqs*L__ads_p + L__l^2 + 2*L__l*X__E + L__l*L__ads_p + R__E^2 + 2*R__E*R__a + R__a^2 + X__E^2 + X__E*L__ads_p;

Dx = L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p

(3)

denom(op(1, rhs(eq_K1_m4))) - rhs(eq_Dx); # checking to see if the denominator expression is the same as the expression of Dx

0

(4)

denom(op(2, rhs(eq_K1_m4))) - rhs(eq_Dx); # checking to see if the denominator expression is the same as the expression of Dx

0

(5)

# 1

map2(applyrule, eq_Dx, eq_K1_m4); # did not work.

K__1 = E__q0*(R__T*E__B*sin(delta)+X__Td*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)+(X__q-X__dp)*i__q0*(X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)

(6)

# 2

subs(eq_Dx, eq_K1_m4); # did not work.

K__1 = E__q0*(R__T*E__B*sin(delta)+X__Td*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)+(X__q-X__dp)*i__q0*(X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)

(7)

# 3

simplify(eq_K1_m4, {Dx = L__aqs*L__l + L__aqs*X__E + L__aqs*L__ads_p + L__l^2 + 2*L__l*X__E + L__l*L__ads_p + R__E^2 + 2*R__E*R__a + R__a^2 + X__E^2 + X__E*L__ads_p}, [Dx]); # did not work.

K__1 = -E__B*((-R__T*(-X__q+X__dp)*i__q0-E__q0*X__Td)*cos(delta)+sin(delta)*(X__Tq*(-X__q+X__dp)*i__q0-R__T*E__q0))/(L__l^2+(L__aqs+L__ads_p+2*X__E)*L__l+X__E^2+(L__aqs+L__ads_p)*X__E+L__aqs*L__ads_p+(R__E+R__a)^2)

(8)

# 4

algsubs(eq_Dx, eq_K1_m4); # did not work.

K__1 = E__q0*(R__T*E__B*sin(delta)+X__Td*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)+(X__q-X__dp)*i__q0*(X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)

(9)

# 5

applyrule(L__aqs*L__l + L__aqs*X__E + L__aqs*L__ads_p + L__l^2 + 2*L__l*X__E + L__l*L__ads_p + R__E^2 + 2*R__E*R__a + R__a^2 + X__E^2 + X__E*L__ads_p = Dx, eq_K1_m4); # did not work.

K__1 = E__q0*(R__T*E__B*sin(delta)+X__Td*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)+(X__q-X__dp)*i__q0*(X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)

(10)

 

Download Q20230606.mw

Hello there, 

Is there any chance to ask for your expertise in this issue of substitution?

I tried to make the expression 'eq_m1' to 'eq_m1_desired' by substituting 'L__ads*L__fd/(L__fd + L__ads)' as 'L__ads_p', but did not succeeded, after a series of different attempts. Would you show me how to achive the desired expression?

restart;

with(LinearAlgebra):

with(DynamicSystems):

interface(imaginaryunit=j):

eq_m1 := m1 = (X__Tq*E__B*sin(delta) - R__T*E__B*cos(delta))/(R__E^2 + 2*R__a*R__E + R__a^2 + X__E^2 + X__E*L__ads*L__fd/(L__fd + L__ads) + 2*X__E*L__l + L__aqs*X__E + L__aqs*L__ads*L__fd/(L__fd + L__ads) + L__aqs*L__l + L__l*L__ads*L__fd/(L__fd + L__ads) + L__l^2);

m1 = (X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(R__E^2+2*R__a*R__E+R__a^2+X__E^2+X__E*L__ads*L__fd/(L__fd+L__ads)+2*X__E*L__l+L__aqs*X__E+L__aqs*L__ads*L__fd/(L__fd+L__ads)+L__aqs*L__l+L__l*L__ads*L__fd/(L__fd+L__ads)+L__l^2)

(1)

eq_m1_desired := m1 = (X__Tq*E__B*sin(delta) - R__T*E__B*cos(delta))/(R__E^2 + 2*R__a*R__E + R__a^2 + X__E^2 + X__E*L__ads_p + 2*X__E*L__l + L__aqs*X__E + L__aqs*L__ads_p + L__aqs*L__l + L__l*L__ads_p + L__l^2);

m1 = (X__Tq*E__B*sin(delta)-R__T*E__B*cos(delta))/(L__aqs*L__l+L__aqs*X__E+L__aqs*L__ads_p+L__l^2+2*L__l*X__E+L__l*L__ads_p+R__E^2+2*R__E*R__a+R__a^2+X__E^2+X__E*L__ads_p)

(2)

######

#eq_m1a := subs({L__ads*L__fd/(L__fd + L__ads) = L__ads_p}, eq_m1);

#eq_m1a := subs({L__ads_p = L__ads*L__fd/(L__fd + L__ads)}, eq_m1);

#eq_m1a := applyrule(L__ads*L__fd/(L__fd + L__ads) = L__ads_p, eq_m1);

#eq_m1a := algsubs(L__ads_p = (L__ads*L__fd)/(L__fd + L__ads), eq_m1);

#eq_m1a := algsubs((L__ads*L__fd)/(L__fd + L__ads) = L__ads_p, eq_m1);

#eq_m1a := eval(eq_m1, L__ads_p = (L__ads*L__fd)/(L__fd + L__ads));

 

Download Q20230602.mw

Hello there, 

Is there any chance to ask this one question?

The attached (following) worksheet shows the result of LieDerivative operation, which is not correct. 

The correct answer is given in the image in the middle of the worksheet. Is there any particular reason regarding Maple's way of conducting the operation in that way?

restart;

with(LinearAlgebra):

with(DifferentialGeometry):

with(LieAlgebras):

DGsetup([x1, x2], M, verbose);

`The following coordinates have been protected:`

 

[x1, x2]

 

`The following vector fields have been defined and protected:`

 

[_DG([["vector", M, []], [[[1], 1]]]), _DG([["vector", M, []], [[[2], 1]]])]

 

`The following differential 1-forms have been defined and protected:`

 

[_DG([["form", M, 1], [[[1], 1]]]), _DG([["form", M, 1], [[[2], 1]]])]

 

`frame name: M`

(1)

 

M > 

f := evalDG((x2)*D_x1 + (c1 * (1 - x1^2) * x2 - c2 * x1)*D_x2);

_DG([["vector", M, []], [[[1], x2], [[2], -c1*x1^2*x2+c1*x2-c2*x1]]])

(2)
M > 

h := evalDG((x1)*D_x1 + (0)*D_x2);

_DG([["vector", M, []], [[[1], x1]]])

(3)
M > 

###### answer

M > 

M > 

LieDerivative(f, h);

_DG([["vector", M, []], [[[1], x2], [[2], x1*(2*c1*x1*x2+c2)]]])

(4)
M > 

 

Download Q20230307.mw

Hello there, 

Is there any chance to ask if there is a way to simplify the numeric outcome from an operation?

Here is what I've been trying:

restart;

with(LinearAlgebra):

interface(imaginaryunit=j):

Amat := Matrix(2, 2, [[-0.1428571428*K__D, -0.1081971238], [376.9911185, 0]]);

Matrix(2, 2, {(1, 1) = -.1428571428*`#msub(mi("K"),mi("D",fontstyle = "normal"))`, (1, 2) = -.1081971238, (2, 1) = 376.9911185, (2, 2) = 0})

(1)

Eigenvalues(Amat);

Vector(2, {(1) = -0.7142857140e-1*`#msub(mi("K"),mi("D",fontstyle = "normal"))`+0.2000000000e-9*sqrt(0.1275510203e18*`#msub(mi("K"),mi("D",fontstyle = "normal"))`^2-0.1019733868e22), (2) = -0.7142857140e-1*`#msub(mi("K"),mi("D",fontstyle = "normal"))`-0.2000000000e-9*sqrt(0.1275510203e18*`#msub(mi("K"),mi("D",fontstyle = "normal"))`^2-0.1019733868e22)})

(2)

Desired := sqrt((2.000000000*10^(-10))^2 * (1.275510203*10^17*K__D^2 - 1.019733868*10^21));

(0.5102040812e-2*K__D^2-40.78935472)^(1/2)

(3)

 


I tried to simplify the Eigen values, to make them in the formality of the 'Desired' numerical expression, but no success yet. 

Thank you, 

Download Q20230110_m1.mw

Hello there, 

Is there any chance to see that the 'eq_5_22_desired' expression shown below can be derived from a collection of the commands. similar to what's given in the 'eq_5_22a'? In other words, is it possible to make Maple aware of the point that 'L__ad/(L__ad + L__fd)' can be interpreted as 'L__ad*L__fd/(L__ad + L__fd) * 1/L__fd'?

restart;

with(LinearAlgebra):

interface(imaginaryunit=j):

eq_5_22 := Psi__ad = -L__ad*L__fd*i__d*1/(L__ad + L__fd) + L__ad*Psi__fd*1/(L__ad + L__fd);

Psi__ad = -L__ad*L__fd*i__d/(L__ad+L__fd)+L__ad*Psi__fd/(L__ad+L__fd)

(1)

eq_5_23x := L__ad__p = 1 / (1/L__ad + 1/L__fd);

L__ad__p = 1/(1/L__ad+1/L__fd)

(2)

eq_5_23 := L__ad__p = evala(rhs(eq_5_23x));

L__ad__p = L__ad*L__fd/(L__ad+L__fd)

(3)

eq_5_22a := Psi__ad = collect(expand(solve(eq_5_18x, Psi__ad)), rhs(eq_5_23)); # error

Error, invalid input: expand expects 1 argument, but received 0

 

eq_5_22_desired := Psi__ad = -L__ad__p*i__d + L__ad__p*Psi__fd/L__fd;

Psi__ad = -L__ad__p*i__d+L__ad__p*Psi__fd/L__fd

(4)

 

Download Q20220812.mw

1 2 3 4 5 6 7 Last Page 1 of 12