salim-barzani

950 Reputation

8 Badges

0 years, 283 days

MaplePrimes Activity


These are questions asked by salim-barzani

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, z, t), quiet); declare(f(x, y, z, t), quiet)

``

(1)

thetai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)

eqw := w[i] = (-1+sqrt(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1))/(2*mu)

Bij := proc (i, j) options operator, arrow; -24*mu/(sqrt(1+(-4*beta*l[j]-4*delta*r[j]-4*alpha)*mu)*sqrt(1+(-4*beta*l[i]-4*delta*r[i]-4*alpha)*mu)-1+((2*r[i]+2*r[j])*delta+(2*l[i]+2*l[j])*beta+4*alpha)*mu) end proc

NULL

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

eqf := f(x, y, z, t) = theta1*theta2+Bij(1, 2)

eqfcomplex := collect(evalc(eval(eval(eqf, l[2] = conjugate(l[1])), l[1] = a+I*b)), t)

eq17 := u(x, y, z, t) = 2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2; equ := simplify(eval(eq17, eqfcomplex))

So we want to find a substitution that removes the time dependence from u. One way is to find the maximum and see how it moves. Here, the first solution gives what we want.

ans := solve({diff(rhs(equ), x), diff(rhs(equ), y), diff(rhs(equ), z)}, {x, y, z}, explicit)

 

NULL

Download hfz.mw

i need the result for (eqt33) but i can reach the result there is any  other way for finding? i need to plot 3D of that function but without have the function how i can do explore on it

w1.mw

 always i try to apply a technique like long wave limit to get my result, but this time when i do i reach zero so the author try to use another method which really i can't reach how they did and some term are dispear and some are remain , it about substituting and apply epsilon go to zero which i don't know how they apply, anyone can figure out how they reach the result, and maybe my letter and paper are not same about small and capital but it is so clear 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

NULL

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)-lambda*(diff(u(x, y, z, t), `$`(y, 2)))+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+gamma*(diff(u(x, y, z, t), z)), x)

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-lambda*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+gamma*(diff(diff(u(x, y, z, t), x), z))

(4)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = a*u(x, y, z, t)))/a, a) end proc, expand(pde))

diff(diff(u(x, y, z, t), t), x)+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-lambda*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+gamma*(diff(diff(u(x, y, z, t), x), z)), 6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))

(5)

lambda := 1; alpha := 1; beta := 1; gamma := 1

1

 

1

 

1

 

1

(6)

NULL

thetai := t*w[i]+x*k[i]+y*l[i]+z*r[i]

t*w[i]+x*k[i]+y*l[i]+z*r[i]

(7)

NULL

eqw := w[i] = -(k[i]^4+k[i]^2+k[i]*l[i]+k[i]*r[i]-l[i]^2)/k[i]

w[i] = -(k[i]^4+k[i]^2+k[i]*l[i]+k[i]*r[i]-l[i]^2)/k[i]

(8)

NULL

Bij := proc (i, j) options operator, arrow; (3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2) end proc

proc (i, j) options operator, arrow; (3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2) end proc

(9)

NULL

eij := (3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)

(3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)

(10)

eval(eij, k[j] = b*k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, b = k[j]/k[i]); Bij := (%-1)/(k[i]*k[j])

(3*k[i]^6*b^2-6*k[i]^6*b^3+(3*b^4*k[i]^4+l[j]^2)*k[i]^2-2*k[i]^2*b*l[i]*l[j]+b^2*k[i]^2*l[i]^2)/(3*k[i]^6*b^2+6*k[i]^6*b^3+(3*b^4*k[i]^4+l[j]^2)*k[i]^2-2*k[i]^2*b*l[i]*l[j]+b^2*k[i]^2*l[i]^2)

 

series(1+O(k[i]^4),k[i],4)

 

1

 

1

 

0

(11)

NULL


Download transformation.mw

I want to remove the Lambert function (LambertW) from my equation, but I don't know how. I tried using the explicit option, but it didn't work. How can I express the equation without LambertW?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)-lambda*(diff(u(x, y, z, t), `$`(y, 2)))+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+gamma*(diff(u(x, y, z, t), z)), x)

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-lambda*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+gamma*(diff(diff(u(x, y, z, t), x), z))

(4)

pde_nonlinear, pde_linear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, t) = a*u(x, y, t)))/a, a) end proc, expand(pde))

0, diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-lambda*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+gamma*(diff(diff(u(x, y, z, t), x), z))

(5)

thetai := t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i]; eval(pde_linear, u(x, y, z, t) = exp(thetai)); eq15 := isolate(%, w[i])

t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i]

 

w[i]*k[i]*exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i])+12*k[i]^2*(exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i]))^2+k[i]^4*exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i])-lambda*l[i]^2*exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i])+alpha*k[i]^2*exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i])+beta*k[i]*l[i]*exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i])+gamma*k[i]*r[i]*exp(t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i])

 

w[i] = -(t*k[i]^4+gamma*t*k[i]*r[i]+alpha*t*k[i]^2+beta*t*k[i]*l[i]-lambda*t*l[i]^2+LambertW(12*t*k[i]*exp(-(t*k[i]^4+alpha*t*k[i]^2+beta*t*k[i]*l[i]+gamma*t*k[i]*r[i]-lambda*t*l[i]^2-x*k[i]^2-y*k[i]*l[i]-z*k[i]*r[i]-eta[i]*k[i])/k[i]))*k[i])/(t*k[i])

(6)

sol := solve(eq15, w[i], explicit)

-(t*k[i]^4+gamma*t*k[i]*r[i]+alpha*t*k[i]^2+beta*t*k[i]*l[i]-lambda*t*l[i]^2+LambertW(12*t*k[i]*exp(-(t*k[i]^4+alpha*t*k[i]^2+beta*t*k[i]*l[i]+gamma*t*k[i]*r[i]-lambda*t*l[i]^2-x*k[i]^2-y*k[i]*l[i]-z*k[i]*r[i]-eta[i]*k[i])/k[i]))*k[i])/(t*k[i])

(7)
 

NULL

Download remove.mw

i try find some part of solution of this kind of pde but i can't get results my openion is maybe this pde is wronge when i defined 

pde.mw

3 4 5 6 7 8 9 Last Page 5 of 25