Maple Learn Questions and Posts

These are Posts and Questions associated with the product, Maple Learn

The concept of “Maple Learn art” debuted on the MaplePrimes blog in December 2021.  Since then, we’ve come a long way with new Maple Learn features and ever-growing creative minds.  Creating art using mathematical expressions and shapes is a great way to hone both your mathematical skills and your creativity, and is the perfect break from a bout of studying or the like.

I started my own Maple Learn art journey over one year ago.  Let’s see how one’s art can improve over time using new and advanced features!

Art with Shapes, March 2022

This pi-themed pie is simple and cute, but could use some additional features:

Adding Shaded() around Maple Learn shape commands colors them in!

Fun fact: I hand-picked all of the coordinates for that pi symbol.  It was an arduous but rewarding process.  Nowadays, I recommend a new method.  When you create a table in Maple Learn with two number columns, the values are plotted as points.  These points can be clicked and dragged across the plot window, and the table updates automatically to display the new coordinates.  How can you use this to make art?

  1. Create a table as described above.
  2. Move the points with your mouse to create an outline of the desired shape.
  3. Use the coordinates from your table in your geometry command.

Let’s apply these techniques in a newer piece: a full recreation of the spaghetti emoji!

Art with Shapes, August 2023

Would you look at that?!  Fully-shaded colors, a background, and lines of spaghetti noodles that weren’t painstakingly guesstimated combine to create a wonderfully improved piece of art.

Art with Animation, March 2022

Visit the document to see its animation.  Animation is an invaluable feature in Maple Learn, frequently utilized to observe how changing variables affect functions or model a concept.  We’ve harnessed its power for animated artwork!  This animation is cute, using parametric functions and more to change the image as the animation variable changes.  Like the previous piece, it’s missing a background, and the leaves overlap the stem awkwardly in some places.

Art with Animation, August 2023

 

This piece has a simple background made with a large black square, but it enhances the overall effect.

The animation here comes from piecewise functions, which display different values based on a given criterion.  In this case, the criterion is the current value of the animation variable.

There are 32 individual polygons in this image (including 8 really tiny ones along the edges!) and 8 rainbow colors.  Each color is associated with a different piecewise function, and displays four random squares in that color in each frame of the animation.

This image isn’t that much more advanced than the animated flower, but I think the execution has vastly improved.

Whether you’ve been following these blog posts since December 2021 or are new to Maple Learn, we hope you give Maple Learn art a try.

And don’t forget that Maple is also a goldmine of artistic potential.  Maple’s bountiful collection of packages such as Fractals, ColorTools, plottools and more are great places to start for math that is as aesthetically pleasing as it is informative.

This week, our staff participated in a series of art challenges using either Maple Learn or Maple itself, each featuring a suggested theme and suggested mathematical content.  Check out the challenges and some of our employees’ entries below, and try out a challenge for yourself!

 

Tuesday’s Art Theme: Pasta

Mathematical Content: Shapes

Example: Lazar Paroski’s spiraling take on spaghetti

 

Wednesday’s Art Theme: Nature

Mathematical Content: Fractals

Example: John May’s Penrose tiling landscape (in Maple!)

 

Thursday’s Art Theme: Disco

Mathematical Content: Animation

Example: Paulina Chin’s disco ball (in Maple!)

 

Friday’s Art Theme: Space

Mathematical Content: Color

Example: that’s today!  Who knows what our staff will create…?

 

We hope these prompts have inspired you! If you create some art you’re really proud of, consider submitting it to be featured in the 2023 Maple Conference’s Creative Works Showcase.

Space. The final frontier. A frontier we wouldn’t stand a chance of exploring if it weren’t for the work of one Albert Einstein and his theories of special relativity. After all, how are we supposed to determine at what speed an alien spaceship is traveling towards Earth if we can’t understand how Newtonian physics break down at high velocities? That is precisely the question that this Maple MathApp asks. Using the interactive tool, you can see how the relative velocities change depending on your reference point. Just what you need for the next time you see a UFO rocketing through the sky!

But what if you don’t have the MathApp on hand when the aliens visit? (So rare to travel anywhere without a copy of Maple on you, I know, but it could happen.) You’ll have to just learn more about special relativity so that you can make those calculations on the fly. And luckily, we have just what you need to do that: our new Maple Learn collection on modern physics, created by Lazar Paroski. Still not quite sure how to wrap your head around the whole thing? Check out this document on the postulates of special relativity, which explains and demonstrates some of the fundamentals of special relativity with lively animations.

 

Screenshot of a Maple Learn document. The right side shows a paused animation of an observer, a moving car, and a moving bird. The left side shows calculations for the relative speeds.

Once you’ve gotten familiar with the basics, it’s time to get funky. This document on time dilation shows how two observers looking at the same event from different frames of reference can measure different times for that event. And of course once you start messing with time, everything gets weird. For an example, check out this document on length contraction, which explains how observers in different frames of reference can measure different lengths for the same moving object. Pretty wild stuff.

 

Screenshot of a Maple Learn document, showing a paused animation of two observers, one inside a moving car, and one outside. Light inside the car is moving up and down.Screenshot of a Maple Learn document, showing a paused animation of two observers, one inside a moving bus and one outside. There is light moving back and forth inside the bus.

So now, armed with this collection of documents, we’ll all be ready for the next time the aliens come down to Earth—ready to calculate the relative speed of their UFOs from the perspectives of various observers. That’ll show ‘em!

Registration for Maple Conference 2023 is now open! This year’s conference will again be a free virtual event. Please visit our site to see more information about the event and to register.

Our call for presentations has now concluded, but it is not too late to submit to our Maple Conference Art Gallery and Creative Works Showcase.

The Agenda section, where you’ll find information about the conference format and an overview schedule, has been added. This will be updated as the details are finalized.  

Disability Pride Month happens every July to celebrate people with disabilities, combat the stigma surrounding disability, and to fight to create a world that is accessible to everyone. Celebrating disability pride isn’t necessarily about being happy about the additional difficulties caused by being disabled in an ableist society: as disabled blogger Ardra Shephard puts it, “Being proud to be disabled isn’t about liking my disability… [It] is a rejection of the notion that I should feel ashamed of my body or my disability. It’s a rejection of the idea that I am less able to contribute and participate in the world, that I take more than I give, that I have less inherent value and potential than the able-bodied Becky next to me.” The celebration started in the US to commemorate the passing of the Americans with Disabilities Act, which prohibits discrimination based on disability, and since then it has spread around the world.

An image of the disability pride flag. The caption reads, 'The disability pride flag, redesigned in 2021 by Ann Magill to be safe for those with visually triggered disabilities.'

So what does any of this have to do with us here in the math community? Well, while it’s easy to think of mathematics as an objective field of study that contains no barriers, the institutions and tools used to teach math are not always so friendly. For an obvious example, if there's a few steps leading up to your math classroom and you use a wheelchair, that's going to be a challenge. And that's just scratching the surface—there are countless ways to be disabled, many of which are invisible, and many of which make a typical classroom environment very challenging to learn in for a variety of different reasons. As well, it can be difficult for prospective mathematicians to ask for accommodations, because of both the stigma against disability and the systemic barriers to receiving the proper accommodations. Just ask Daniel Reinholz, a disabled math professor at San Diego State University, whose health forced them to drop out of several engineering courses during their undergraduate degree: “Throughout it all, I never had a notion that I could receive accommodation or support, or that I deserved it. (Even though I’ve never really fit into the “right” category of disabled to be accommodated, so who knows what difference it really would have made.)” While Daniel was lucky enough to find a path to mathematics that worked for them, not all disabled people currently have that path available to them. As math professor Allison Miller puts it in her AMS blog post about disability in math, “Success in mathematics should not depend on whether someone’s needs happen to mesh sufficiently well with institutional structures and spaces that have been designed to serve only certain kinds of minds and bodies.”

While we can’t make systemic changes on our own, we here at Maplesoft can still do our part to make tools for math that are something everyone can use and enjoy. As such, we’re excited to share that Maple Learn is now compatible with the screen reader NVDA. By using this screen reader, and with our extensive keyboard shortcuts that negate the need for a mouse, individuals with low or no vision can now use Maple Learn to help them explore mathematics. All you need to do is select “Enable Accessibility” from the hamburger menu, and you’ll be ready to go! Maple Learn also includes the colour palette CVD, which is designed to be accessible to colourblind users. To learn how to access the colour palettes, check out this How-To document.

A screenshot of Maple Learn's hamburger menu, which is found in the top lefthand corner. The last item on the list reads 'Enable Accessibility', and is circled in red.


There is still more work for us to be done to ensure that we’re doing our part to make math accessible to everyone. Not only are there still ways in which we’re working to improve the accessibility of our products, but we all as a math community need to strive towards recognizing the barriers we may have previously overlooked and finding ways to provide accommodation for all mathematicians. One organization, called Sines of Disability, is already working towards that very goal. They are a community of disabled mathematicians dedicated to dismantling the systemic ableism present in mathematics. For this Disability Pride Month, consider taking the time to check out these resources and learn more about this issue.

Can’t seem to find the mistake in your math? Instead of painfully combing through each line, let the new “Check my work” operation in Maple Learn help! Now in Maple Learn, you can type out a solution to a variety of math problems, and let Maple Learn check your work! Additionally, by signing on to Maple Learn and the Maple Calculator app, you can take a photo of your handwritten math, import it into Maple Learn, and check your work with the click of a button.

Whether you’re solving a system of linear equations or an algebra problem, computing an integral or a partial derivative, “Check my work” can help. Maple Learn will tell you which steps are “Ok” and which steps to double-check. If you get a step wrong, Maple Learn will point out which line has an error, then proceed to check whether the rest of your work followed the right procedure.

Here’s an example of a solution to a system of linear equations written out by hand. All I had to do was snap a picture in the Maple Calculator app, and Maple Learn instantly had my equation set ready to go in the Cloud Expressions menu. Then, I just clicked “Check my work” in the Context Panel.

Screenshot of a handwritten solution to a system with three linear equations and a screenshot of how the expressions appear in Maple Learn through the Cloud Expressions feature.

Maple Learn identified that I was trying to solve a system with 3 equations, checked my steps, and concluded my solution set was correct.

Screenshot of the feedback "Check my work" gives to the steps that correctly solve a system of three linear equations. "Ok" for correct steps, and a concluding message once completed.

What happens if you make a mistake? Here’s an example of evaluating an improper integral with a u-substitution that involves a limit. This time, I directly typed my steps into Maple Learn and pressed “Check my work” in the Context Panel. Check my work recognized the substitution step and noted what step was incorrect; can’t forget to change the limits of integration! After pointing out where my mistake was, Maple Learn continued to evaluate the rest of my steps while taking my error into account. It confirmed that the rest of the process was correct, even though the answer wasn’t.

Screenshot of incorrect steps in Maple Learn attempting to solve an improper integral. The error is highlighted with the feedback of "Check this step" from "Check my work"

After making my change in Maple Learn and checking again, I’ve found the correct value.

Screenshot of the corrected steps to solving the improper integral, with the positive feedback from Check my work indicating these steps are correct.

Checking your work has never been easier with Maple Learn. Whether you want to type your solution directly in Maple Learn or import math with Maple Calculator, the new “Check my work” feature has you covered. Visit the how-to document for more examples using this new feature and let us know what you think!

 

What was established in 1788 in Prussia, is derived from the Latin word for “someone who is going to leave”, and can be prepared for using the many capabilities of Maple Learn? Why, it’s the Abitur exam! The Abitur is a qualification obtained by German high school students that serves as both a graduation certificate and a college entrance exam. The exam covers a variety of topics, including, of course, mathematics.

So how can students prepare for this exam? Well, like any exam, writing a previous year’s exam is always helpful. That’s exactly what Tom Rocks Math does in his latest video—although, with him being a math professor at Oxford University, I’d wager a guess that he’s not doing it as practice for taking the exam! Instead, with his video, you can follow along with how he tackles the problems, and see how the content of this particular exam differs from what is taught in other countries around the world.

Oh, but what’s this? On question 1 of the geometry section, Tom comes across a problem that leaves him stumped. It happens to the best of us, even university professors writing high school level exams. So what’s the next step?  Well, you could use the strategy Tom uses, which is to turn to Maple Learn. With this Maple Learn document, you can see how Maple Learn allows you to easily add a visualization of the problem right next to your work, making the problem much easier to wrap your head around. What’s more, you don’t have to worry about any arithmetic errors throwing your whole solution off—Maple Learn can take care of that part for you, so you can focus on understanding the solution! And that’s just what Tom does. In his video, after he leaves his attempt at the problem behind, he turns to this document to go over the full solution, making it easy for the viewer (and any potential test-takers!) to understand where he went wrong and how to better approach problems like that in the future.

A screenshot of a Maple Learn document, showing a 3D plot depicting the intersection of 2 spheres. A text box describes how the plot relates to the problem.

So to all you Abitur takers out there—that’s just one problem that can be transformed with the power of Maple Learn. The next time you find yourself getting stuck on a practice problem, why not try your hand at using Maple Learn to solve it? After that, you’ll be able to fly through your next practice exam—and that’ll put you one step ahead of an Oxford math professor, so it’s a win all around!

Sometimes, it’s the little things. Those little improvements that make a good tool even better. Sometimes, it’s as simple as an easy shorthand notation that allows you to create and label points on a graph with a single command. Just to pick a totally random example.

 

A screenshot of a Maple Learn document containing a math cell and a plot. The math cell reads 'A(1,2)'. The plot show a point plotted at (1,2) with the label 'A'.

Okay, maybe it’s not totally random. Maybe this new point notation is one of our newest features in Maple Learn, and maybe it’s now easy and quick for you to create labeled points to your heart’s content. Maybe you could learn more about all the ins and outs of this new feature by checking out the how-to document.

But I can’t make any guarantees, of course.

That said, if this hypothetical scenario were true, you would also be able to see it in action in our new document on the proof of the triangle inequality.

A screenshot of a Maple Learn document. The left side shows an explanation of how the triangles are constructed for Euclid's proof of the triangle inequality. The right side shows an adjustable graph of said triangles.

With this document, you can explore a detailed (and interactive!) visualization of the proof using Euclidean geometry. You can adjust the triangles to see for yourself that the sum of the lengths of any two sides must be greater than the third side, read through the explanation to see the mathematical proof, and challenge yourself with the questions it leaves you to answer. And those points on those triangles? Labeled. Smoothly and easily. I wonder how they might have done it?

We hope you enjoy the new update! Let us know what other features you want to see in Maple Learn, and we’ll do our best to turn those dreams into reality.

This is a reminder that we are seeking presentation proposals for the Maple Conference.

Details on how to submit your proposal can be found on the Call for Participation page. Applications are due July 11, 2023.

We would love to hear about your work and experiences with Maple! Presentations about your work with Maple Learn are also welcome.

We all know that math is beautiful in and of itself—but sometimes students might need a little convincing. What better way to do that then sprucing up your math with a little colour? With Maple Learn, plot colours are fully customizable. We have several colour palettes to choose from—want your document to evoke the delicate tones of springtime? Looking for a palette that’s colourblind friendly? Or maybe you’re just nostalgic for the colours of Maple V? All these options and more are available for making your graphs colourful and coordinated. But maybe you’re the kind of person who wants to go against the grain, and you laugh in the face of predetermined colour coordination. Don’t worry, we’ve got you covered too! With our colour selector, you can also choose your own custom colours. The full colour spectrum is right at your fingertips. To learn more about how to customize the colours on your document, check out this How-To guide.

And of course, the potential for colour inevitably leads to the potential for art. Our Maple Learn Art Gallery has plenty of fun and colourful works you can admire and contemplate (and maybe even draw inspiration from!). One of our most recent and most colourful additions is this document showcasing the history of the rainbow pride flag, in honour of June being Pride Month. You can use the slider to move through time, letting you see how the colours on the flag evolved and read about the meanings behind them. And, thanks to the colour selector, the colours match the precise shades used for the original flags! That’s the magic of hexadecimal colours for you.


Hold on—the magic of hexadecimal colours, I hear you ask? What an enticing concept. If only we had some kind of document, perhaps one made in Maple Learn, that explained how hexadecimal colours worked and included an interactive example so that you could easily see how the red, green, and blue colour values blend together to create any given colour… Too bad we don’t!

Just kidding. Of course we do.

If all these colours have inspired you, be sure to check out our Call for Creative Works for the upcoming Maple Conference! Maybe your colourful creation could be this year’s winner.

If you've seen Paulina's announcement then you know that we are once again holding a virtual Maple Conference this year.  As well, we are once again going to have a virtual gallery featuring artwork and creative projects submitted by the Maple community!

Last year we had a number of great submissions to our Maple Art Gallery and our Maple Learn Creative Showcase.  These were our excellent prize winners.

From left to right we have A visualization of all the primitive roots of 10037 created by Simon Plouffe, winner of the Judge’s Choice, Mother’s Day Rose created with Maple plots by Greg Wheaton, winner of the People’s Choice, and Mona Lisa in Maple Learn created by Paul DeMarco (with help from Leonardo DaVinci), the winner of the People’s Choice for the Maple Learn Showcase.

This year we are expanding the Gallery into two collections to encourage more people to submit.  They are

  • The Art Gallery - A small gallery to highlight high effort, mathematically interesting works (with stricter criteria)

  • The Creative Works Showcase - A larger showcase for nearly any interesting visual works created with Maplesoft products like Maple Learn and Maple

Feel free to submit nearly anything cool for the Creative Works Showcase, if we find it particularly impressive we might even ask you to let us consider it for the gallery.  Also, do not be intimidated by the title "Art Gallery" we're looking for anything that has taken some artistic effort and tells a mathematical story.

For more information on critera and how to submit, please visit our Call for Creative Works.  The important deadline to know is the September 14th deadline for submission of works with virtual gallery reception and awards ceremony durring the conference October 26-27.

I look forward to seeing all the submissions for the Maple community again this year!

We are happy to announce another Maple Conference this year, to be held October 26 and 27, 2023!

It will be a free virtual event again this year, and it will be an excellent opportunity to meet other members of the Maple community and get the latest news about our products. More importantly, it's a chance for you to share the work work you've been doing with Maple and Maple Learn. There are two ways to do this.

First, we have just opened the Call for Participation. We are inviting submissions of presentation proposals on a range of topics related to Maple, including Maple in education, algorithms and software, and applications. We also encourage submission of proposals related to Maple Learn. 

You can find more information about the themes of the conference and how to submit a presentation proposal at the Call for Participation page. Applications are due July 11, 2023.

Presenters will have the option to submit papers and articles to a special Maple Conference issue of the Maple Transactions journal after the conference.

The second way in which to share your work is through our Maple Art Gallery and Creative Works Showcase. Details on how to submit your work, due September 14, 2023, are given on the Web page.

Registration for attending the conference will open later this month. Watch for further announcements in the coming weeks.

I encourage all of you here in the Maple Primes community to consider joining us for this event, whether as a presenter or attendee!

Paulina Chin
Contributed Program Chair

Happy Pride Month, everyone! June is a month for recognizing and celebrating the LGBT+ community. It was started to mark the anniversary of the Stonewall riots, which were a landmark event in the fight for LGBT+ rights. We celebrate Pride Month to honour those who have fought for their rights, acknowledge the struggles the LGBT+ community continues to face to this day, and celebrate LGBT+ identities and culture.

This Pride Month, I want to give a special shoutout to those in the math community who also identify as LGBT+. As a member of the LGBT+ community myself, I’ve noticed a fair amount of stigma against being queer in math spaces—and surprisingly often coming from within the community itself. It’s one thing for us to make jokes amongst ourselves about how none of us can sit in chairs properly (I don’t even want to describe how I’m sitting as I write this), but the similar jokes I’ve heard my LGBT+ friends making about being bad at math are a lot more harmful than they might realize. And of course it isn’t just coming from within the community—many people have a notion (whether conscious or unconscious) that all LGBT+ people are artistically inclined, not mathematical or scientific. Obviously, that’s just not true! So I want to spend some time celebrating queerness in mathematics, and I invite you to do the same.

One of the ways we’re celebrating queerness in math here at Maplesoft is with new Pride-themed Maple Learn documents, created by Miles Simmons. What better way to celebrate Pride than with trigonometry? This document uses sinusoidal transformations to mimic a pride flag waving in the wind. You can adjust the phase shift, vertical shift, horizontal stretch, and vertical stretch to see how that affects the shape of the flag. Then, you can watch the animation bring the flag to life! It’s a great way to learn about and visualize the different ways sinusoidal waves can be transformed, all while letting your colours fly!

 

A screenshot of a Maple Learn document. The plot window shows a pride flag constructed from sine waves, and the document describes how we will be adding wind in the form of function transformations.

For more trigonometry, you can also check out this fun paint-by-numbers that can help you practice the sines, cosines, and tangents of special angles. And, as you complete the exercise, you can watch the Pride-themed image come to life! Nothing like adding a little colour to your math practice to make it more engaging.

 

A screenshot of a Maple Learn document showing a partially coloured paint-by-numbers grid, where the numbers are special trig angles.

If you’re looking for more you can do to support LGBT+ mathematicians this Pride Month, take a look at Spectra, an association for LGBT+ mathematicians. Their website includes an “Outlist” of openly LGBT+ mathematicians around the world, and contact information if you want to learn more about their experiences. The Fields Institute has also hosted LGBT+Math Days in the past, which showcases the research of LGBT+ mathematicians and their experiences of being queer in the math community. Blog posts like this one by Anthony Bonato, a math professor at Toronto Metropolitan University, and interviews like this one with Autumn Kent, a math professor at the University of Wisconsin-Madison, can also help allies in mathematics to understand the experiences of their queer colleagues and how to best support them. Math is everywhere and for everyone—so let’s make sure that the systems we use to teach and explore math are for everyone too!

Happy Pride! 🏳️‍🌈

Probability distributions can be used to predict many things in life: how likely you are to wait more than 15 minutes at a bus stop, the probability that a certain number of credit card transactions are fraudulent, how likely it is for your favorite sports team to win at least three games in a row, and many more. 

Different situations call for different probability distributions. For instance, probability distributions can be divided into two main categories – those defined by discrete random variables and those defined by continuous random variables. Discrete probability distributions describe random variables that can only take on countable numbers of values, while continuous probability distributions are for random variables that take values from continuums, such as the real number line.

Maple Learn’s Probability Distributions section provides introductions, examples, and simulations for a variety of discrete and continuous probability distributions and how they can be used in real life. 

One of the distributions highlighted in Maple Learn’s Example Gallery is the binomial distribution. The binomial distribution is a discrete probability distribution that models the number of n Bernoulli trials that will end in a success.

This distribution is used in many real-life scenarios, including the fraudulent credit card transactions scenario mentioned earlier. All the information needed to apply this distribution is the number of trials, n, and the probability of success, p. A common usage of the binomial distribution is to find the probability that, for a recently produced batch of products, the number that are defective crosses a certain threshold; if the probability of having too many defective products is high enough, a company may decide to test each product individually rather than spot-checking, or they may decide to toss the entire batch altogether.

An interesting feature of the binomial distribution is that it can be approximated using a different type of distribution. If the number of trials, n, is large enough and the probability of success, p, is small enough, a Poisson Approximation to the Binomial Distribution can be applied to avoid potentially complex calculations. 

To see some binomial distribution calculations in action and how accurate the probabilities supplied by the distribution are, try out the Binomial Distribution Simulation document and see how the Law of Large Numbers relates to your results. 

You can also try your hand at some Binomial Distribution Example Problems to see some realistic examples and calculations.

Visit the Binomial Distribution: Overview document for a more in-depth explanation of the distribution. The aforementioned Probability Distributions section also contains overviews for the geometric distribution, Poisson distribution, exponential distribution, and several others you may find interesting!

2-dimensional motion and displacement are some of the first topics that high school students learn in their physics class. In my physics classes, I loved solving 2-dimensional displacement problems because they require the use of so many different math concepts: trigonometry, coordinate conversions, and vector operations are all necessary to solve these problems. Though displacement problems can seem complicated, they are easy to visualize.
For example, below is a visualization of the displacement of someone who walked 10m in the direction 30o North of East, then walked 15m in the direction 45o South of East:

From just looking at the diagram, most people could identify that the final position is some angle Southeast of the initial position and perhaps estimate the distance between these two positions. However, finding an exact solution requires various computations, which are all outlined in the Directional Displacement Example Problem document on Maple Learn.

Solving a problem like this is a great way to practice solving triangles, adding vectors, computing vector norms, and converting points to and from polar form. If you want to practice these math skills, try out Maple Learn’s Directional Displacement Quiz; this document randomly generates displacement questions for you to solve. Have fun practicing!

 

In March of 2023, two high school students, Calcea Johnson, and Ne’Kiya Jackson, presented a new proof of the Pythagorean Theorem at the American Mathematical Society’s Annual Spring Southeastern Sectional Meeting. These two young women are challenging the conventions of math as we know it.
The Pythagorean Theorem states that in a right angle triangle, the sum of the squares of the legs is equal to the square of the hypotenuse: 


The theorem has been around for over two thousand years and has been proven hundreds of times with many different methods. So what makes the Johnson-Jackson proof special? The proof is one of the first to use trigonometry.
For years, mathematicians have been convinced that a trigonometric proof of the Pythagorean Theorem is impossible because much of trigonometry is based upon the Pythagorean Theorem itself (an example of circular reasoning).
That said, some results in trigonometry are independent of the Pythagorean Theorem, namely the law of sines, and the sine and cosine ratios; the latter is a result that 12-year-old Einstein used in his trigonometric proof of the theorem.
Though all the details of the Johnson-Jackson proof have not been made public, there was enough information for me to recreate the proof in Maple Learn. The idea of the proof is to construct a right angle triangle with an infinite series of congruent right angle triangles (the first of which has side lengths a, b, and c). Then, using the sine ratio, solve for the hypotenuse lengths of each small congruent triangle. To explore this construction see Johnson and Jackson’s Triangle Construction on Maple Learn. 


 

Next, find the side lengths of the large triangle (A and B) by evaluating an infinite sum (composed of the hypotenuse lengths of the small congruent triangles). Finally, apply the law of sines to the isosceles triangle made from the first 2 congruent triangles. After simplifying this expression, the Pythagorean relationship (c2 = a2 + b2) emerges.
 

 

To see more details of the proof, check out Johnson and Jackson’s Proof of Pythagorean Theorem on Maple Learn.
This new proof of the Pythagorean Theorem shows that discoveries in math are still happening and that young people can play a big role in these discoveries!

2 3 4 5 6 7 8 Page 4 of 10