Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Given the following functions and respective intervals graph them and determine all values of in the interval (a,b) such that

f'(c) =f(b)-f(a)/b-a (apply the Mean Value Theorem) 

 Question 1: f(x)=x^3-2*x      [0,2]

 Question 2 : g(x)= cuberoot(x-3)^2     [-3,4]

 

Please HELP!!! 

 

how I can write a program code for newmark method.

in this method time has 3 order derivation

 We know the following facts: 

The SequenceGraph command returns a graph with the specified degree sequence given as input, if such a graph exists. It raises an exception otherwise. 
 But  If I  want to get more graphs  that satisfy this condition of degree sequence ? (If graphs are not many ,I want get all graphs better)
what should I do.?
For example: DrawGraph(SequenceGraph([3, 2, 2, 1, 1, 1]));  It returns the first graph below, but it is obvious that the second graph also fits the condition.

squenceGraph.mw

Hello Dear,

I have the following equation

 This equation is satisfied if the coefficients are zero.

So I need an order in Maple to write that

 

 

Good morning everyone, 

I have a problem, when I try to evaluate the definite integral below, Maple can not provide a result. What can I do so that the Maple can calculate this integral?

This is the Maple code with the result:

 

 

restart

with(VectorCalculus):

with(LinearAlgebra):

with(CodeGeneration):

N := 1:

M := 2:

``

for i to N do rpv1 || i := 0; rpv2 || i := 0; rpv3 || i := 0; for j to M do rpv1 || i := VectorCalculus:-`+`(rpv1 || i, Typesetting:-delayDotProduct(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), Phi || i || j)); rpv2 || i := VectorCalculus:-`+`(rpv2 || i, Typesetting:-delayDotProduct(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), `ϕ` || i || j)); rpv3 || i := VectorCalculus:-`+`(rpv3 || i, Typesetting:-delayDotProduct(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), gamma || i || j)) end do; rp || i := Matrix([[rpv1 || i], [rpv2 || i], [rpv3 || i]]) end do:

``

for i to N do rppv1 || i := 0; rppv2 || i := 0; rppv3 || i := 0; for j to M do rppv1 || i := VectorCalculus:-`+`(rppv1 || i, Typesetting:-delayDotProduct(diff(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), s), Phi || i || j)); rppv2 || i := VectorCalculus:-`+`(rppv2 || i, Typesetting:-delayDotProduct(diff(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), s), `ϕ` || i || j)); rppv3 || i := VectorCalculus:-`+`(rppv3 || i, Typesetting:-delayDotProduct(diff(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), s), gamma || i || j)) end do; rpp || i := Matrix([[rppv1 || i], [rppv2 || i], [rppv3 || i]]) end do:

``

``

for i to N do for j from 0 to 0 do U || i || j := 0 end do end do:

for i to N do for j from 0 to 0 do V || i || j := 0 end do end do:

for i to N do for j from 0 to 0 do W || i || j := 0 end do end do:

for i to N do for j from 0 to VectorCalculus:-`+`(M, -2) do U || i || (VectorCalculus:-`+`(j, 1)) := VectorCalculus:-`+`(U || i || j, VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^VectorCalculus:-`+`(j, 1)) end do end do:

for i to N do for j from 0 to VectorCalculus:-`+`(M, -2) do V || i || (VectorCalculus:-`+`(j, 1)) := VectorCalculus:-`+`(V || i || j, VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^VectorCalculus:-`+`(j, 1)) end do end do:

for i to N do for j from 0 to VectorCalculus:-`+`(M, -2) do W || i || (VectorCalculus:-`+`(j, 1)) := VectorCalculus:-`+`(W || i || j, VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^VectorCalculus:-`+`(j, 1)) end do end do:

for i to N do f || i := VectorCalculus:-`+`(Typesetting:-delayDotProduct(VectorCalculus:-`*`(Typesetting:-delayDotProduct(E, A), 1/mu), VectorCalculus:-`+`(VectorCalculus:-`+`(rpp || i, VectorCalculus:-`-`(VectorCalculus:-`*`(rpp || i, 1/evalc(norm(Re(rp || i), 2))))), VectorCalculus:-`*`(Typesetting:-delayDotProduct(rp || i, Typesetting:-delayDotProduct(rp || i^%T, rpp || i)), 1/evalc(norm(Re(rp || i), 2))^3))), Typesetting:-delayDotProduct(g, e3)) end do:

for i to N do for j to VectorCalculus:-`+`(M, -1) do fun || i || j := int(VectorCalculus:-`*`(U || i || j, Row(f || i, 1)), s = xi || i .. L || i) end do end do;

fun11

(int((s-xi1)*(E*A*(2*Phi12/L1^2-2*Phi12/(sqrt((gamma11/L1+2*gamma12*s/L1^2-2*gamma12*xi1/L1^2)^2+(`ϕ11`/L1+2*`ϕ12`*s/L1^2-2*`ϕ12`*xi1/L1^2)^2+(Phi11/L1+2*Phi12*s/L1^2-2*Phi12*xi1/L1^2)^2)*L1^2)+(Phi11/L1+(2*(s-xi1))*Phi12/L1^2)*((2*(Phi11/L1+(2*(s-xi1))*Phi12/L1^2))*Phi12/L1^2+(2*(`ϕ11`/L1+(2*(s-xi1))*`ϕ12`/L1^2))*`ϕ12`/L1^2+(2*(gamma11/L1+(2*(s-xi1))*gamma12/L1^2))*gamma12/L1^2)/((gamma11/L1+2*gamma12*s/L1^2-2*gamma12*xi1/L1^2)^2+(`ϕ11`/L1+2*`ϕ12`*s/L1^2-2*`ϕ12`*xi1/L1^2)^2+(Phi11/L1+2*Phi12*s/L1^2-2*Phi12*xi1/L1^2)^2)^(3/2))/mu+g*e3)/L1, s = xi1 .. L1))*e[x]

(1.1)

``

NULL

``


 

Download integral.mw

 

Thank you !

Hello,

What is the minimum period of the following equation.


 

d := evalf(expand((100+100*cos(6*t)+200*cos(12*sqrt(2)*t))^2))

40000.-2580480000.*cos(t)^2*cos(1.414213562*t)^6+604800000.*cos(t)^2*cos(1.414213562*t)^4-51840000.*cos(t)^2*cos(1.414213562*t)^2+2621440000.*cos(t)^6*cos(1.414213562*t)^12-7864320000.*cos(t)^6*cos(1.414213562*t)^10+8847360000.*cos(t)^6*cos(1.414213562*t)^8-4587520000.*cos(t)^6*cos(1.414213562*t)^6+1075200000.*cos(t)^6*cos(1.414213562*t)^4-92160000.*cos(t)^6*cos(1.414213562*t)^2-3932160000.*cos(t)^4*cos(1.414213562*t)^12+0.1179648000e11*cos(t)^4*cos(1.414213562*t)^10-0.1327104000e11*cos(t)^4*cos(1.414213562*t)^8+6881280000.*cos(t)^4*cos(1.414213562*t)^6-1612800000.*cos(t)^4*cos(1.414213562*t)^4+138240000.*cos(t)^4*cos(1.414213562*t)^2+1474560000.*cos(t)^2*cos(1.414213562*t)^12-4423680000.*cos(t)^2*cos(1.414213562*t)^10+4976640000.*cos(t)^2*cos(1.414213562*t)^8+720000.*cos(t)^2+274560000.*cos(1.414213562*t)^4-5125120000.*cos(1.414213562*t)^6+0.4942080000e11*cos(1.414213562*t)^8-0.2811494400e12*cos(1.414213562*t)^10+0.1013841920e13*cos(1.414213562*t)^12+0.1677721600e12*cos(1.414213562*t)^24-0.1006632960e13*cos(1.414213562*t)^22+0.2642411520e13*cos(1.414213562*t)^20-0.3984588800e13*cos(1.414213562*t)^18+0.3810263040e13*cos(1.414213562*t)^16-0.2406481920e13*cos(1.414213562*t)^14-5760000.*cos(1.414213562*t)^2+10240000.*cos(t)^12-30720000.*cos(t)^10+34560000.*cos(t)^8+1320000.*cos(t)^4-16000000.*cos(t)^6

(1)

``


 

Download period

 

 

  I want list all  diameter-2  Nonisomorphismgraphs  of order n . I use the following code, but its running speed  is slow with  order of graph gradually increasing . (for example,n=10)
 Are there other ways to Improve it? 
restart:
with(GraphTheory):
Graphs_data:=[NonIsomorphicGraphs(4,restrictto =[connected], output = graphs, outputform =graph)]:
Diameter_select:=select[flatten](t->Diameter(t)=2,Graphs_data):
DrawGraph(Diameter_select,size=[50,50]);

  By the way,  Why doesn't size=[50,50] work ?

 
                       
                   
               
               
           
           
               
                   
                 

  Hello: 
    As a first step to my question, let  G be  a graph and  I'd like to know  whether it contains a C4 (cycle of 4) as its subgraph.
     For example: .   It contains C4. So  program may be return true.  
    I'm most concerned about the following thing ( it is important problem for me, since in graph theory, we usually consider some class graphs contain no sepecific graph ) :
   1 Further , I want to  get all connected graphs of order less than 6  which  contains no C4 .
   2 More generally, I want  to konw  a graph  whether contains some graph as its subgraph.For example : does it contain K4CompleteGraph(4)K32  CompleteGraph(3, 2)  and so on ?
    I read the  function subgaph.  But  It didn't solve my problem. Many thanks for your help or advise.
   # I  just know there is a function  IsTriangleFree which test if graph is triangle-free ( graph comtains no C3 in Maple 2019. I think my question and how to program may be  meaningful.

Hi, 

Versions concerned:  [ Maple 2015 ... Maple 2018 ]

I use DocumentTools:-Tabulate to display a matrix of numbers while coloring them according to some condition.
(line DocumentTools:-Tabulate(M, color=((M,i,j)->`if`(M[i,j]>3,....) below ... please note the output is not loaded for some unknown reason).
The fact is that the matrix appears with black characters meaning 'color' doesn't work.

In a second attempt I convert matrix M into a matrix of strings and use now
DocumentTools:-Tabulate(S, color=((S,i,j)->`if`(parse(S[i,j])>3,...)
I get now the desired result with some blue and red numbers.

So converting to strings could be a workaround.
But think to matrices where elements would be algebraic expressions, for instance 
M := Matrix(2, 2, (i,j)->exp(x^i)+cos(x*j))
and that we use the coloring scheme is color=((M,i,j)->`if`(i+j>3, "Red", "Blue")
Converting M to a string matrix will display the element [2, 2] in red and the others in blue, but what you get then is a no longer a 2D pretty output but, literally, things like exp(x^2)+cos(x*2) 

The "convert to string" workaround is thus far from perfect.
Is the fact that 'color' only acts on strings a "normal and known" behaviour?
Is it possible to change the color of the font for non "string type matrices" ?
 

restart:

M :=Matrix(2, 2, (i,j)->i+j)

M := Matrix(2, 2, {(1, 1) = 2, (1, 2) = 3, (2, 1) = 3, (2, 2) = 4})

(1)

DocumentTools:-Tabulate(M, color=((M,i,j)->`if`(M[i,j]>3, "Red", "Blue")), width=30)

S :=convert~(M, string):
DocumentTools:-Tabulate(S, color=((S,i,j)->`if`(parse(S[i,j])>3, "Red", "Blue")), width=30)

 


 

Download Tabulate_Color.mw

Dear friends~

Recently I wanted to create some funny gif with Maple based on other interesting pictures but I met some problems:(1)I read many commands in ImageTools but few can aid me.(2)If I use “plot(,background=file_address)”,then the whole background will be filled with pictures but I just want it to be a part of my gif.I finally noticed that “plot3d(,image=file_address)”can realize my idea to some extents if I adjust orientation’s value  suitably.

However,I still think my operations can be improved(for example,my code consumes a fair amount of  memory) and there maybe one better approach to be good too. Hence I upload my code and sincerely look forward your suggestions and help~

#Janesefor do it in 2019/4/15 13:20 with Maple2018~
with(plots):
# smile.jpg's address
image_file:="C:/Users/ysl-pc/Desktop/":
str:="有","朋","自","远","方","来","不","亦","乐","乎","?":
location_func,dy,dz:=3*sin(2*3.14/10*y),.75,.75:

display(seq(display(textplot3d([0,1,4.5,cat(str[1..ha])],align='right'),textplot3d([0,3.5,-4.5,"By Janesefor ~"],align='right'),plot3d([0,s,t],subs(y=ha-1,[s=y-dy..y+dy,t=location_func-dz..location_func+dz])[],image=cat(image_file,"smile.jpg"),axes=none,scaling=constrained,orientation=[180,90,-180],view=[default,0..10,-5..5],glossiness=0,lightmodel=light4)),ha=[`$`(1..nops([str]))]),insequence=true);
Export(cat(image_file,"smile.gif"),%)


smile.mw

Dear Support

I am attempting to model quantum dynamics, and have defined a coupled set of nonlinear PDEs I would like to solve for coupled solutions u(x,y,t) and v(x,y,t) using MAPLE 18.

I attach an image of part of the worksheet the pair of PDEs...The initial conditions u(x,y,0), v(x,y,0) are a pair of respectively positive and negative 2D gaussians on the x,y, domain.

Before I go any further, please would you check that MAPLE 18 is in principle capable of finding solutions u(x,y,t), v(x,y,t) solutions, and let me know whether it is worth pursuing the solution?  I have had a look at the MAPLE documentation, but am not sure whether MAPLE can solve this system.

As a warm-up, I successfully solved a 1-D system u(x,t), v(x,t) using pdsolve[numeric], but I am not clear whether MAPLE 18 can solve for u(x,y,t), v(x,y,t) either numerically or analytically on the [x,y,t] domain.

I hope you can provide help/guidance. An image the equations in MAPLE is displayed here...

Melvin Brown

UK

I can  this equation.

CV.mw
 

restart; c__v := 1.2; `τ__q` := 8.5*10^(-12); `τ__T` := 90.0*10^(-12); rho := 1000; k := 10

1.2

 

0.8500000000e-11

 

0.9000000000e-10

(1)

k*(diff(T(x, t), x, x))+k*`τ__T`*(diff(T(x, t), t, x, x)) = rho*c__v*(diff(T(x, t), t))+(diff(T(x, t), t, t))*c__v*rho*`τ__q`+(1/2)*c__v*rho*`τ__q`^2*(diff(T(x, t), t, t, t))

10*(diff(diff(T(x, t), x), x))+0.9000000000e-9*(diff(diff(diff(T(x, t), t), x), x)) = 1200.0*(diff(T(x, t), t))+0.1020000000e-7*(diff(diff(T(x, t), t), t))+0.4335000000e-19*(diff(diff(diff(T(x, t), t), t), t))

(2)

Boundary condition:

T(0, t) = 300; T(10, t) = 300

#####################################

INITIAL CONDITIONS:

 

T(x, 0) = 300; (D[1](T))(x, 0) = 0, (D[2](T))(x, 0) = 0

(D[1](T))(x, 0) = 0, (D[2](T))(x, 0) = 0

(3)

``


 

Download CV.mw

 

 

Hi,

The help page TimeSeriesAnalysis, ExponentialSmoothingModel contains an error.
The command that generates the output (7) should be
esm2 := ExponentialSmoothingModel(seasonal={"A","M"},constraints=admissible)
instead of
esm2 := ExponentialSmoothingModel(seasonal={A,M},constraints=admissible)

PS : there is no tag relative to TimeSeriesAnalysys

 Hello!
  As we  known, in Graphtheory , a loop is an edge that joins a vertex to itself (for example  fig1 vertex1) and multiple edges (for example Fig2)are two or more edges that join the same two vertices.  But in Maple,  G := Graph({{a, b}, {a, c}, {b, c}}). The Edges(G) function returns a set  (not list )of the edges of G.  So, for example I can't create loop{1,1} by G:=Graph({{1,1},{1,2},{1,5},{2,5},{2,3},{5,4},{3,4},{4,6}})   . But in my research, I consider a graph which exist loops or multiple edges. I want to create  it  .How should I do?  Thanks in advance.

my code like this

with(GraphTheory):
G:=Graph({{1,2},{1,5},{2,5},{2,3},{5,4},{3,4},{4,6}}):
G:=Graph({{1,1},{1,2},{1,5},{2,5},{2,3},{5,4},{3,4},{4,6}}):DrawGraph(G,style=spring);
G2:=Graph({{1,2}}):
DrawGraph(G2);
G3:=Graph({{1,2},{1,2}}):
DrawGraph(G3);

 

How I can get integral by part.

I want to calculate these integral.

Thank you

integral_part.pdf

 

First 29 30 31 32 33 34 35 Last Page 31 of 63