Maple 2023 Questions and Posts

These are Posts and Questions associated with the product, Maple 2023

My program simply keeps hanging.

It takes me 5 days to complete something which should take 2-3 hrs, since Maple keeps hanging, and I have to keep terminating server.exe and start again. Sometimes when I start again it does not hang where it was. I do this dozens of time per day.

even though I use timelimit on every possible Maple call. The problem also is that when timelimit works, it takes 10-20 times more time than asked. I ask for 10 second timeout, sometimes it timesout after 3-10 minutes if I am lucky.

So I keep trying to make workarounds and I am tired of all of this. Just waste of time. This is getting worst with each new Maple release not better.

Here is an example

restart;
expr:=-1/3*2^(2/3)/((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)*((-1/2*a^2*p-1/2*p^2*a+1/2*p*((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)*a-3)*(-p^2*(-((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)+a+p))^(2/3)+2^(2/3)*(-(a+3/2*p)*p*((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)+a^2*p+5/2*p^2*a+3/2*p^3+3)*p)/(-((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)+a+p)/(-1/2*2^(2/3)*(-p^2*(-((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)+a+p))^(2/3)+p*(p*(-p^2*(-((a^2*p+2*a*p^2+p^3+4)/p)^(1/2)+a+p))^(1/3)+2^(1/3)))/p^2;

try 
    t0:=time[real]();
    timelimit(20,int(expr,p));
catch:
    print("time used ",time[real]()-t0,"seconds");
    print("timed out");
end try;

in Maple 2023, with 128 GB RAM and very fast PC and nothing else is running, it hangs. I could leave it for hrs, the server.exe  is running at full CPU and timelimit is ignored. Timelimit in Maple is useless.

I do not know what else to do. if someone can suggest something, I am willing to try anything before I finally give up.

 

For the function coulditbe it says

The environment variable _EnvTry can be used to specify the intensity of the testing by the is and coulditbe routines. Currently _EnvTry can be set to normal (the default) or hard. If _EnvTry is set to hard, is and coulditbe calls can take exponential time.

But how does one know the current value of _EnvTry which is supposed to be set to normal.? If I do   _EnvTry it does not show any value.  And when I do 

anames('environment');
anames('environment','active');

I do not see _EnvTry even listed.  I wanted to make sure I am setting it correctly.

Is it enough to do this?

 

foo:=proc()
 _EnvTry:='hard';
  #now use coulditbe, it should use hard value?
  #coulditbe(....)
end proc;

foo();

Would the above actually tell coulditbe to try hard? I wanted to use this inside a proc without affecting any global setting it might have. It is not possible to tell by just calling it if it actually using the hard option or not.

I do not think I am setting this right, I just tried

foo:=proc()
 _EnvTry:='hard';
 _EnvTry:='XXXX';
  #now use coulditbe, it should use hard value?
  coulditbe(1=2)
end proc;

And it did not complain or anything. Any value I put seems to work. I must be not setting this correctly as coulditbe does not complain.

I wish help would give example usages. But Maple help is not good at all as it has no usage examples to help users.

btw, I think the use of environment variables is bad in programming.

Each function should instead accept options as argument and one should set an option explictly.  So coulditbe should have an explicit optional argument to pass it. This makes the code more clear when looking at the call also.

Programming environment variables are just like global variables.

Bad way to program as in large program one can lose track of these settings.

Let  denote the factors of the "absolute factorization" of the following bivariate polynomial (i.e., ): 

p := product(x^3*k^2 + (x*(y + 2) + 2)*k - x^3 + y^3 + y + 1, k = RootOf(_Z^3 + _Z + 1)):
f__0 := (evala@AFactors)(p)[2, .., 1]; # Assume that we do not know the extension field in advance.

It is unfortunate that the output is not easy to read, so I have to simplify it here. However, it appears that none of the results (i.e., , , and ) is eminently readable. 
 

restart;

p := product(x^3*(k^2-1)+(x*(y+2)+2)*k+y^3+y+1, k = RootOf(_Z^3+_Z+1))

-3*x^9+8*x^6*y^3-5*x^3*y^6+y^9-4*x^7*y+3*x^4*y^4-8*x^7+8*x^6*y-x^5*y^2+6*x^4*y^3-10*x^3*y^4+x^2*y^5+3*y^7-4*x^5*y+3*x^4*y^2-5*x^3*y^3+4*x^2*y^4+3*y^6-4*x^5+5*x^4*y-11*x^3*y^2+5*x^2*y^3+4*x*y^4+3*y^5-2*x^4-16*x^3*y-x^2*y^2+8*x*y^3+6*y^4-11*x^3-16*x^2*y+4*x*y^2+8*y^3-20*x^2+3*y^2-16*x+7*y-3

(1)

f__0 := (`@`(evala, AFactors))(p)[2, () .. (), 1]

[x^3+((-(106/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+1486/3267+(1/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2)*y+2972/3267-(212/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(2/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2)*x+(-(4/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2-3040/3267+(61/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))*y^3+(-(4/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2-3040/3267+(61/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))*y-68/3267-(151/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(2/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2, x^3+(((106/3267)*RootOf(10501+_Z^3+51*_Z)+(106/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+1486/3267+(1/3267)*(-RootOf(10501+_Z^3+51*_Z)-RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))^2)*y+2972/3267+(212/3267)*RootOf(10501+_Z^3+51*_Z)+(212/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(2/3267)*(-RootOf(10501+_Z^3+51*_Z)-RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))^2)*x+(-(4/3267)*(-RootOf(10501+_Z^3+51*_Z)-RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))^2-3040/3267-(61/3267)*RootOf(10501+_Z^3+51*_Z)-(61/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))*y^3+(-(4/3267)*(-RootOf(10501+_Z^3+51*_Z)-RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))^2-3040/3267-(61/3267)*RootOf(10501+_Z^3+51*_Z)-(61/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))*y-68/3267+(151/3267)*RootOf(10501+_Z^3+51*_Z)+(151/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(2/3267)*(-RootOf(10501+_Z^3+51*_Z)-RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))^2, x^3+((-(106/3267)*RootOf(10501+_Z^3+51*_Z)+1486/3267+(1/3267)*RootOf(10501+_Z^3+51*_Z)^2)*y+2972/3267-(212/3267)*RootOf(10501+_Z^3+51*_Z)+(2/3267)*RootOf(10501+_Z^3+51*_Z)^2)*x+(-(4/3267)*RootOf(10501+_Z^3+51*_Z)^2-3040/3267+(61/3267)*RootOf(10501+_Z^3+51*_Z))*y^3+(-(4/3267)*RootOf(10501+_Z^3+51*_Z)^2-3040/3267+(61/3267)*RootOf(10501+_Z^3+51*_Z))*y-68/3267-(151/3267)*RootOf(10501+_Z^3+51*_Z)-(2/3267)*RootOf(10501+_Z^3+51*_Z)^2]

(2)

f__1 := evala(f__0)

[34/3267-(151/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(2/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)+(2/3267)*RootOf(10501+_Z^3+51*_Z)^2+(2870/3267)*x-(212/3267)*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(2/3267)*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)-(2/3267)*x*RootOf(10501+_Z^3+51*_Z)^2-(2836/3267)*y+(61/3267)*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(4/3267)*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)+(4/3267)*y*RootOf(10501+_Z^3+51*_Z)^2+(1435/3267)*x*y-(106/3267)*x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(1/3267)*x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)-(1/3267)*x*y*RootOf(10501+_Z^3+51*_Z)^2+x^3-(2836/3267)*y^3+(61/3267)*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(4/3267)*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)+(4/3267)*y^3*RootOf(10501+_Z^3+51*_Z)^2, x^3+(106/3267)*x*y*RootOf(10501+_Z^3+51*_Z)+(106/3267)*x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(1435/3267)*x*y+(1/3267)*x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)+(2870/3267)*x+(212/3267)*x*RootOf(10501+_Z^3+51*_Z)+(212/3267)*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(2/3267)*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)-(4/3267)*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)-(2836/3267)*y^3-(61/3267)*y^3*RootOf(10501+_Z^3+51*_Z)-(61/3267)*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(4/3267)*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z)-(2836/3267)*y-(61/3267)*y*RootOf(10501+_Z^3+51*_Z)-(61/3267)*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+34/3267+(151/3267)*RootOf(10501+_Z^3+51*_Z)+(151/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(2/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)*RootOf(10501+_Z^3+51*_Z), x^3-(106/3267)*x*y*RootOf(10501+_Z^3+51*_Z)+(1486/3267)*x*y+(1/3267)*x*y*RootOf(10501+_Z^3+51*_Z)^2+(2972/3267)*x-(212/3267)*x*RootOf(10501+_Z^3+51*_Z)+(2/3267)*x*RootOf(10501+_Z^3+51*_Z)^2-(4/3267)*y^3*RootOf(10501+_Z^3+51*_Z)^2-(3040/3267)*y^3+(61/3267)*y^3*RootOf(10501+_Z^3+51*_Z)-(4/3267)*y*RootOf(10501+_Z^3+51*_Z)^2-(3040/3267)*y+(61/3267)*y*RootOf(10501+_Z^3+51*_Z)-68/3267-(151/3267)*RootOf(10501+_Z^3+51*_Z)-(2/3267)*RootOf(10501+_Z^3+51*_Z)^2]

(3)

f__2 := simplify(f__0, size)

[(1/3267)*(-4*y^3+(-4+x)*y-2+2*x)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2+(1/3267)*(61*y^3+(61-106*x)*y-151-212*x)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(3040/3267)*y^3+(1/3267)*(1486*x-3040)*y+x^3-68/3267+(2972/3267)*x, (1/3267)*(-4*y^3+(-4+x)*y-2+2*x)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)^2+(1/3267)*((-8*y^3+(-8+2*x)*y-4+4*x)*RootOf(10501+_Z^3+51*_Z)-61*y^3+(106*x-61)*y+212*x+151)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(1/3267)*(-4*y^3+(-4+x)*y-2+2*x)*RootOf(10501+_Z^3+51*_Z)^2+(1/3267)*(-61*y^3+(106*x-61)*y+212*x+151)*RootOf(10501+_Z^3+51*_Z)-(3040/3267)*y^3+(1/3267)*(1486*x-3040)*y+x^3-68/3267+(2972/3267)*x, (1/3267)*(-4*y^3+(-4+x)*y-2+2*x)*RootOf(10501+_Z^3+51*_Z)^2+(1/3267)*(61*y^3+(61-106*x)*y-151-212*x)*RootOf(10501+_Z^3+51*_Z)-(3040/3267)*y^3+(1/3267)*(1486*x-3040)*y+x^3-68/3267+(2972/3267)*x]

(4)

f__3 := simplify(f__0, RootOf)

[34/3267-(2836/3267)*y^3+(61/3267)*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(151/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(2870/3267)*x-(106/3267)*x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(2836/3267)*y+(61/3267)*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(1435/3267)*x*y+x^3-(212/3267)*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(1/3267)*(-x*y-2*x+4*y^3+4*y+2)*RootOf(10501+_Z^3+51*_Z)^2+(1/3267)*(-2*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+2*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+4*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+4*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))*RootOf(10501+_Z^3+51*_Z), x^3-(61/3267)*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(151/3267)*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(1435/3267)*x*y+34/3267+(2870/3267)*x-(2836/3267)*y^3-(2836/3267)*y+(106/3267)*x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(212/3267)*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-(61/3267)*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+(1/3267)*(-61*y-61*y^3+151+2*x*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+106*x*y-4*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)-4*y^3*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+x*y*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2)+212*x-2*RootOf(_Z^2+_Z*RootOf(10501+_Z^3+51*_Z)+51+RootOf(10501+_Z^3+51*_Z)^2))*RootOf(10501+_Z^3+51*_Z), x^3+((-(106/3267)*RootOf(10501+_Z^3+51*_Z)+1486/3267+(1/3267)*RootOf(10501+_Z^3+51*_Z)^2)*y+2972/3267-(212/3267)*RootOf(10501+_Z^3+51*_Z)+(2/3267)*RootOf(10501+_Z^3+51*_Z)^2)*x+(-(4/3267)*RootOf(10501+_Z^3+51*_Z)^2-3040/3267+(61/3267)*RootOf(10501+_Z^3+51*_Z))*y^3+(-(4/3267)*RootOf(10501+_Z^3+51*_Z)^2-3040/3267+(61/3267)*RootOf(10501+_Z^3+51*_Z))*y-68/3267-(151/3267)*RootOf(10501+_Z^3+51*_Z)-(2/3267)*RootOf(10501+_Z^3+51*_Z)^2]

(5)

Unfortunately, none of f__0, f______1__, f__2, and f______3__ is very readable.
It can be proved that the following one is also the factors.

f__4 := [x^3 + RootOf(3*_Z^3 - 4*_Z^2 + _Z - 1, index = 3)*(x*(y + 2) + 2) + RootOf(3*_Z^3 + 8*_Z^2 + 5*_Z + 1, index = 3)*(y^3 + y + 1), x^3 + RootOf(3*_Z^3 - 4*_Z^2 + _Z - 1, index = 2)*(x*(y + 2) + 2) + RootOf(3*_Z^3 + 8*_Z^2 + 5*_Z + 1, index = 1)*(y^3 + y + 1), x^3 + RootOf(3*_Z^3 - 4*_Z^2 + _Z - 1, index = 1)*(x*(y + 2) + 2) + RootOf(3*_Z^3 + 8*_Z^2 + 5*_Z + 1, index = 2)*(y^3 + y + 1)];

evala(p+3*`?()`(`*`, f__4))NULL

[x^3+RootOf(3*_Z^3-4*_Z^2+_Z-1, index = 3)*(x*(y+2)+2)+RootOf(3*_Z^3+8*_Z^2+5*_Z+1, index = 3)*(y^3+y+1), x^3+RootOf(3*_Z^3-4*_Z^2+_Z-1, index = 2)*(x*(y+2)+2)+RootOf(3*_Z^3+8*_Z^2+5*_Z+1, index = 1)*(y^3+y+1), x^3+RootOf(3*_Z^3-4*_Z^2+_Z-1, index = 1)*(x*(y+2)+2)+RootOf(3*_Z^3+8*_Z^2+5*_Z+1, index = 2)*(y^3+y+1)]

 

0

(6)

`~`[length]([f__ || (0 .. 4)])

[3858, 4389, 1410, 3608, 513]

(7)

`~`[MmaTranslator:-Mma:-LeafCount]([f__ || (0 .. 4)])

[935, 1047, 391, 881, 166]

(8)

As you can see, f__4 is of lower mathematical complexity.


 

Download fully_simplify_f_0.mw

The  above (whose "size" is smaller) comes from manual simplification, but this is not a easy work. Is there a way to get the much simplified result programmatically?

I am not able to make a MWE for this error, as it only shows in the debugger. So it seems Maple internal memory changes or some other library is loaded to cause this. Inside the debugger, I get to a function which does this

DBG> simplify(JacobiDN(x,k)^2*n)

Error, invalid input: simplify/Jacobi/JacobiDN expects its 1st argument, k, to be of type posint, but received 0

Version 2023 on windows 10

In a worksheet, the above works just fine

restart;
simplify(JacobiDN(x,k)^2*n)

Back to the debugger, if I write (2*n) instead of 2*n, then the error goes away

DBG> simplify(JacobiDN(x,k)^(2*n))
JacobiDN(x,k)^(2*n)

The values of x,k,n are all symbols and have no values in the code running:

I have no idea why this happend when I run the code only. It think x is zero in the above for some reason.

Sorry can't make MWE, I wish I can. Something strange happens when I run the code that does not show otherwise. 

Any suggestions how to invetigate this more? Stepping into the simplify code it fails in

DBG> next
`simplify/check_constant`:
   3   return type(r,'And(constant,Or(Not(function),satisfies(f -> evalb(op(f)
         <> NULL))))')

DBG> r
JacobiDN(x,k)^2*n^2

DBG> type(r,'And(constant,Or(Not(function),satisfies(f -> evalb(op(f)          <> NULL))))')
false

DBG> step
`simplify/Jacobi`
`simplify/do`:
  84               userinfo(1,simplify,'applying',new_simp,
                     `function to expression`);

 85               new_r := new_simp(r,symb_mode);  

Here it generate the error.


It has nothing to do with simplify. Here is a call to integrate which gives same error

DBG> lhs(ode)
diff(diff(xi(x),x),x)-k^2*JacobiSN(x,k)*JacobiCN(x,k)/JacobiDN(x,k)*diff(xi(x),x)+(-k^2*JacobiCN(x,k)^2+k^2*JacobiSN(x,k)^2-k^4*JacobiSN(x,k)^2*JacobiCN(x,k)^2/JacobiDN(x,k)^2-JacobiSN(x,k)^2*k^2*n^2+n^2)*xi(x)

DBG> int(lhs(ode),x)
Error, invalid input: simplify/Jacobi/JacobiDN expects its 1st argument, k, to be of type posint, but received 0

DBG> x
x

DBG> k
k

DBG> xi(x)
xi(x)

 

alias(b = JacobiCN(sqrt(2)*sqrt(x), sqrt(2)*_Z/2)^2);
                          lessthan, b

I could not find an explanation on the help page.

I would have expected simply b as the return value.

Update:
A worksheet that generates the output


 

RootOf(JacobiCN(sqrt(2)*sqrt(x), (1/2)*sqrt(2)*_Z)^2*_Z^2+_Z^2-2)

RootOf(JacobiCN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2+_Z^2-2)

(1)

plot(RootOf(JacobiCN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2+_Z^2-2), x = 0 .. 5)

 

convert(JacobiCN(sqrt(2)*sqrt(x), (1/2)*sqrt(2)*_Z)^2, Elliptic_related)

1-JacobiSN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2

(2)

convert(RootOf(JacobiCN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2+_Z^2-2), Elliptic_related)

RootOf(JacobiSN(2^(1/2)*x^(1/2), (1/2)*2^(1/2)*_Z)^2*_Z^2-2*_Z^2+2)

(3)

alias(b = JacobiSN(sqrt(2)*sqrt(x), (1/2)*sqrt(2)*_Z))

lessthan, b

(4)

``

Download alias_with_lessthan_output.mw

If I understand right, the form  is equivalent to  (where the optional index variable is omitted), which produces a sequence of n occurrences of y. But how to explain the following output (of p1())? 

restart;

kernelopts(version)

`Maple 2023.0, X86 64 WINDOWS, Mar 06 2023, Build ID 1689885`

(1)

p0 := proc()
    local a := 1, b := 2;
    seq('assign(('a', 'b') = (a + 1, 2*b))', 1 .. 3);
    print(a, b)
end:

p1 := proc()
    local a := 1, b := 2;
    seq('assign(('a', 'b') = (a + 1, 2*b))', 3);
    print(a, b)
end:

p2 := proc()
    local a := 1, b := 2;
    'assign(('a', 'b') = (a + 1, 2*b))' $ 3;
    print(a, b)
end:

p3 := proc()
    local a := 1, b := 2;
    to 3 do
        assign(('a', 'b') = (a + 1, 2*b))
    od;
    print(a, b)
end:

p0()

p1()

p2()

p3()

4, 16

 

5, 32

 

4, 16

 

4, 16

(2)


Download singular_behaviour_of_`seq`.mw

Main code: 

p1 := proc()
    local a := 1, b := 2;
    seq('assign(('a', 'b') = (a + 1, 2*b))', 3);
    print(a, b)
end:
p1():

Hi,

I am exploring the Grading package in Maple, and I want to create a random question about limits. (Question 9). Any ideas for the correct code? Thank you

QUIZZTestMaple.mw

I had purchached reseach licience Maple 2022 towards the end of 2022 only and Quantum Chemistry Toolbox I purchased in Feb 2022 only.

Now i find significant update in toolbox in just 3 months. Now guide me how should i address this issuse.

I had to take loan in india to buy the toolbox.

It is only 3 months.

Can you suggest me how solve the problem to get the update without spending again.

What is the way guide someone.

Ever wonder how to show progress updates from your executing code without printing new lines each time?

One way to do this is to use a TextArea component and the DocumentTools package. The TextArea could be inserted from the Components Palette in Maple, or programmatically like so:

restart;

with(DocumentTools):

with(DocumentTools:-Components):

with(DocumentTools:-Layout):

s := "0": #initial text value

T := TextArea(s, identity = "TextArea0"):
xml := Worksheet(Group(Input(Textfield(T)))):

insertedname:=InsertContent(xml)[1,1]: #find the inserted component name in case changed

for i to 10 do #start the demonstration procedure
   Threads:-Sleep(1);
   SetProperty(insertedname,value,sprintf("%d",i),refresh=true);
end do:

Maplets:-Examples:-Message("Done");


Download text-area-update-progress.mw

y'' + 1/x * u' + u = 6 - 9x + x^2 - x^3

with baundary condition :

u(0) = 0 , and u(1) = 0

Assuming I have an expression

you can know that the derivative with respect to y will vanish when y is a constant y0.

How can we use the mathematical software Maple to simplify this expression?

There appears to be a bug in Maple 2023 where constants beginning with a Greek letter cannot be saved.  Assigning a constant to a Greek letter works in the Maple interface but does not work when reading an MPL file encoded as UTF-8.  Example:

read "D:/Nikki/docs/Maple/constants.mpl" :

MPL file contents:

alias(asec=arcsec) : # arcsecant

ζX1 := asec(1) : # first airmass zenith angle
ζX2 := asec(2) : # second airmass zenith angle

The constant "ζX1" can be assigned/saved in Maple but shows as unassigned when imported from an MPL file encoded as UTF-8.

Any assistance in how to use Greek letters in MPL files is much appreciated.

Maple 2023 still can't verify its own series solution. This happens with Frobenius method when the indicial root are repated. I think I mentioned or reported this long time ago but unable to find a link now.

My question is: Since this looks like it will not be fixed by Maplesoft anytime soon, any one could suggest an alternative method to verify this solution?

restart;

ode:=2*x^2*diff(y(x), x, x) + 2*x*diff(y(x), x) - x*y(x) =0;
sol:=dsolve(ode,y(x),'series');
odetest(sol,ode,'series')

Maple's solution is correct, I solved it by hand and get same solution.

Maple 2023 on windows 10.

I could not find a way to check whether or not a given value belongs to an interval expressed as RealRange (or a union of them e.g. RealRange(Open(-10),-5), RealRange(Open(-6),infinity).

Ideally, I would like a Boolean function that takes two arguments (i) a value v and (ii) a (union of) RealRange r, and returns true/false depending on whether or not value v is in/out of the range r.

When trying to load/import/read an MPL file with Maple 2023, I get an error message of "Error, recursive assignment" which only links to a page which states "There is no help page available for this error."

https://www.maplesoft.com/support/help/errors/view.aspx?path=Error,%20recursive%20assignment

Presumably there is an error in the Maple syntax that prevents execution, but I cannot find a way to debug.  Maple Code Editor Diagnostics says "No Errors" but Maple Code Editor Console says "Error: recursive assignment."  The MPL file is 485 lines but I am assuming the error could be anywhere in the file.  Is there any way to fix this?

Update: I found the error by copying just a handful of lines at a time into Maple until the error was reproduced.  It was a typo of just one character out of 16,960 characters.  But this is very frustrating.  Why can't Maple 2023 tell me what line the error is on?  Is there a better way to debug MPL files?

First 23 24 25 26 27 28 29 Page 25 of 32