Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

In this kind of contour plot i have two line but when i change time variable t just contour of one line wil move the other is not do any movement and is stop how i can  make the second plot one second line move too? also there is any way for ploting this kind any other option?

line-2-done.mw

It is possible to perform the simplest QFT calculations with second quantization, in Maple? Bosons in a box. See attached example. bosons_in_a_box.mw

Sure any general purpose programming language is capable of performing this task with enough effort. What I am interested in is if the physics tools has a standard way of dealing with these calculations. The general impedement when attempting the calculation is that integrations are perfomed by replacements with delta functions or kronecker delta functions, and its not clear how to force the Maple Physics package to recognize this or if that's possible. Part of the problem is that integrations in maple are defined in one dimension at a time where as in QFT the integration element is almost always atleast three dimensional, d^3x or dxdydzy, the later of which can get extremely cumbersome with even a small number of fields under consideration. I don't find much of what I am refering to mentioned in the help pages and I doubt these types of QFT calculations are possible to perform in Maple without addressing these issues.

bosons_in_a_box.mw

i don't  know  why my graph make a problem and what is issue i did plot  but this time make issue for me which i don't know where is problem there is anyone which can help and even modified the plot?

explore-chaotic.mw

In thus manuscript i got some reviewer comment which is asked to simplify this expresion and there is a lot of them maybe if i do by hand i  made a mistake becuase a lot of variable so how i can fix this issue and make thus square root are very simple as they demand

restart

B[2] := 0

0

(1)

K := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(2)

simplify(K)

(1/2)*exp(I*((k*v+w)*tau^alpha+alpha*(k*xi+gamma))/alpha)*2^(3/4)*((lambda*(a[5]*(-lambda^2*B[1]^2+mu^2)/(lambda*a[4]))^(1/2)+(-B[1]*cosh(xi*(-lambda)^(1/2))*lambda-mu)*(lambda*a[5]/a[4])^(1/2)+sinh(xi*(-lambda)^(1/2))*lambda*(-a[5]/a[4])^(1/2)*(-lambda)^(1/2)*B[1])/(B[1]*cosh(xi*(-lambda)^(1/2))*lambda+mu))^(1/2)

(3)

subsindets(K, `&*`(rational, anything^(1/2)), proc (u) options operator, arrow; (u^2)^(1/2) end proc)

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(4)

latex(%)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

KK := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp((k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma)*I)

(5)

latex(KK)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

NULL

Download simplify.mw

what is problem in here

restart;

with(plots):

with(LinearAlgebra):

with(DEtools):

diff(u(x), x) = f(u(x), v(x)), diff(v(x), x) = g(u(x), v(x)) for the two differential equations.

f := (u,v) -> u+cos(v);
g := (u,v) -> u*v-v+sin(v);

proc (u, v) options operator, arrow; u+cos(v) end proc

 

proc (u, v) options operator, arrow; v*u-v+sin(v) end proc

(1)

The equilibria:

equilibria := solve({f(u,v)=0, g(u,v)=0}, {u,v},explicit);

{u = 1, v = Pi}, {u = -cos(RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z)), v = RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z)}

(2)

allvalues(RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z))

RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z, 1.306542374), RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z, -1.306542374), RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z, -2.331122370), RootOf(sin(_Z)*_Z^2+sin(_Z)-2*_Z, 2.331122370), 0

(3)
 

NULL

Download remove.mw

i want plot a system of differential equation and do phaseportrait i did but when i want make it a little bit more clear and colorfull like rainbow when i find the C.Q i don't know how set the option for ploting?

e1.mw

I used Maple’s odetest to check the validity of 36 exact solutions.

About half of them return zero, meaning they satisfy the ODE correctly. But the other half don’t — odetest gives nonzero expressions.

My question is:

Could there be a mistake in my assumptions, or are some of these solutions only valid under specific conditions?

I’d appreciate any clarification or suggestions.

ode-test-36.mw

I'm currently working on applying a specific method to solve a nonlinear equation. However, I've encountered a recurring issue: during the process, I often cannot determine certain parameters, which forces me to abandon the solution or switch to a different method. This has happened multiple times and is disrupting my goal of applying all intended methods consistently to a single equation.

In particular, I’m struggling to identify the correct parameters for U(ξ), which are essential for the solution. This challenge is not limited to one method I’ve faced similar problems in previous attempts, and I’m unsure why these parameters cannot be derived in some cases.

My question is: How can I manage this issue effectively? Is there a reliable way to predict or determine whether the necessary parameters will emerge correctly before fully applying a method?

I would greatly appreciate any insights or strategies you could share to help me handle this problem more systematically.

Thank you in advance for your support.

runing.mw

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

in here How we can seperate the coefficent of conjugate this conjugate sign how remove from my equation ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi)); declare(P(x, t)); declare(q(x, t))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

P(x, t)*`will now be displayed as`*P

 

q(x, t)*`will now be displayed as`*q

(2)

pde := I*(diff(u(x, t), t))+diff(u(x, t), `$`(x, 2))+abs(u(x, t))^2*u(x, t) = 0

I*(diff(u(x, t), t))+diff(diff(u(x, t), x), x)+abs(u(x, t))^2*u(x, t) = 0

(3)

S := u(x, t) = (sqrt(a)+P(x, t))*exp(I*a*t)

u(x, t) = (a^(1/2)+P(x, t))*exp(I*a*t)

(4)

S1 := conjugate(u(x, t)) = (sqrt(a)+conjugate(P(x, t)))*exp(-I*a*t)

conjugate(u(x, t)) = (a^(1/2)+conjugate(P(x, t)))*exp(-I*a*t)

(5)

Q := abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

(6)

F1 := expand(simplify(subs({S, S1}, rhs(Q))))

a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))+abs(P(x, t))^2

(7)

F2 := abs(u(x, t))^2 = remove(has, F1, abs(P(x, t))^2)

abs(u(x, t))^2 = a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))

(8)

FF := collect(F2, sqrt(a))

abs(u(x, t))^2 = a+(P(x, t)+conjugate(P(x, t)))*a^(1/2)

(9)

F3 := abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*sqrt(a))*rhs(S)

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(10)

F4 := remove(has, F3, P(x, t)*conjugate(P(x, t)))

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(11)

expand(%)

abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(12)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, P(x, t) = T*P(x, t)))/T, T) end proc, expand(%))

() = (), abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(13)

F6 := abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a*conjugate(P(x, t))

abs(u(x, t))^2*u(x, t) = exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t))

(14)

subs({F6, S}, pde)

I*(diff((a^(1/2)+P(x, t))*exp(a*t*I), t))+diff(diff((a^(1/2)+P(x, t))*exp(a*t*I), x), x)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(15)

eval(%)

I*((diff(P(x, t), t))*exp(a*t*I)+I*(a^(1/2)+P(x, t))*a*exp(a*t*I))+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(16)

expand(%)

I*(diff(P(x, t), t))*exp(a*t*I)+exp(a*t*I)*a*P(x, t)+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(17)

expand(%/exp(I*a*t))

I*(diff(P(x, t), t))+a*P(x, t)+diff(diff(P(x, t), x), x)+a*conjugate(P(x, t)) = 0

(18)

PP := collect(%, a)

(P(x, t)+conjugate(P(x, t)))*a+I*(diff(P(x, t), t))+diff(diff(P(x, t), x), x) = 0

(19)

U1 := P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

(20)

eval(subs(U1, PP))

(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0

(21)

simplify((r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(22)

J := eval(%)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(23)

expand(%)

a*conjugate(r[1])*exp(I*conjugate(m)*conjugate(t))/exp(I*conjugate(l)*conjugate(x))+a*conjugate(r[2])*exp(I*conjugate(l)*conjugate(x))/exp(I*conjugate(m)*conjugate(t))-r[2]*exp(I*m*t)*l^2/exp(I*l*x)+r[2]*exp(I*m*t)*a/exp(I*l*x)-r[2]*exp(I*m*t)*m/exp(I*l*x)-r[1]*exp(I*l*x)*l^2/exp(I*m*t)+r[1]*exp(I*l*x)*a/exp(I*m*t)+r[1]*exp(I*l*x)*m/exp(I*m*t) = 0

(24)

indets(%)

{a, l, m, t, x, r[1], r[2], exp(I*l*x), exp(I*m*t), exp(I*conjugate(l)*conjugate(x)), exp(I*conjugate(m)*conjugate(t)), conjugate(l), conjugate(m), conjugate(t), conjugate(x), conjugate(r[1]), conjugate(r[2])}

(25)

subs({exp(-I*(l*x-m*t)) = Y, exp(I*(l*x-m*t)) = X}, J)

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(26)

collect(%, {X, Y})

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(27)

Download conjugate.mw

I am currently working with an ordinary differential equation (ODE) that I find difficult to express and solve accurately. In this ODE, the symbol f represents an exponential function rather than a typical variable, which adds to the confusion. Although I have followed the format used in related research papers, the results I obtain are not satisfactory.

Since this type of ODE is new and somewhat unfamiliar to me, I would greatly appreciate your guidance in:

  1. Properly formulating the ODE.

  2. Understanding the role of f in the context of exponential functions.

  3. Finding the correct and complete solutions.

  4. Learning how to clearly present each solution step by step.

Thank you in advance for your support.

AA.mw

Manually factoring each equation in this system one by one is time-consuming and inefficient. Is there a way to automate the factoring of expressions into two multiplicative terms—some of which may be single-term factors—using code?

restart

with(PDEtools)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

G1 := 5*lambda^2*alpha[1]^4*alpha[0]*a[4]+lambda^2*alpha[1]^4*a[3]-10*lambda*alpha[1]^2*alpha[0]^3*a[4]+lambda*k^2*a[1]*alpha[1]^2-6*lambda*alpha[1]^2*alpha[0]^2*a[3]+alpha[0]^5*a[4]-k^2*a[1]*alpha[0]^2-3*lambda*alpha[1]^2*alpha[0]*a[2]+alpha[0]^4*a[3]+lambda*w*alpha[1]^2+alpha[0]^3*a[2]-w*alpha[0]^2+((lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1])*(diff(G(xi), xi))+lambda^2*beta[0]*a[5]*alpha[1]^2-4*mu*lambda*alpha[1]^4*a[3]+5*lambda^2*beta[0]*alpha[1]^4*a[4]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]+12*mu*alpha[1]^2*alpha[0]^2*a[3]+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*lambda*alpha[1]^2*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*lambda*alpha[1]^2*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3]-2*w*alpha[0]*beta[0]+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*mu*w*alpha[1]^2)/G(xi)+((1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-k^2*a[1]*beta[0]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-9*mu^2*alpha[1]^2*a[1]*(1/4)-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]-(1/4)*lambda*beta[0]^2*a[1]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-20*mu*lambda*beta[0]*alpha[1]^4*a[4]-7*mu*lambda*beta[0]*a[5]*alpha[1]^2+(2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-4*lambda*beta[0]*alpha[1]^3*a[3]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4]-mu*lambda*alpha[1]^3*a[5]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]-2*k^2*a[1]*alpha[1]*beta[0]-(1/2)*lambda*beta[0]*alpha[1]*a[1]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))-w*beta[0]^2)/G(xi)^2+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+3*beta[0]^2*alpha[1]*a[2]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)+8*mu*beta[0]*alpha[1]^3*a[3]-2*lambda*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]-6*mu^2*alpha[1]^3*a[5]-10*lambda*beta[0]^2*alpha[1]^3*a[4]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+beta[0]^3*a[2]-14*mu^2*beta[0]*a[5]*alpha[1]^2+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+mu*beta[0]^2*a[1]-lambda*beta[0]^3*a[5]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3])/G(xi)^3+((4*beta[0]^3*alpha[1]*a[3]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^3*a[5]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+20*mu*beta[0]^2*alpha[1]^3*a[4]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+20*mu*beta[0]^3*alpha[1]^2*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*alpha[1]^4*a[4]+beta[0]^4*a[3]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+3*mu*beta[0]^3*a[5]+5*beta[0]^4*alpha[0]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4))/G(xi)^4+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5]+5*beta[0]^4*alpha[1]*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4])*(diff(G(xi), xi))+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+beta[0]^5*a[4])/G(xi)^5 = 0

indets(G1)

{k, lambda, mu, w, xi, B[1], B[2], a[1], a[2], a[3], a[4], a[5], alpha[0], alpha[1], beta[0], G(xi), diff(G(xi), xi)}

(2)

``

(3)

eq0 := 5*lambda^2*a[4]*alpha[0]*alpha[1]^4+lambda^2*a[3]*alpha[1]^4-10*lambda*a[4]*alpha[0]^3*alpha[1]^2+k^2*lambda*a[1]*alpha[1]^2-6*lambda*a[3]*alpha[0]^2*alpha[1]^2+a[4]*alpha[0]^5-k^2*a[1]*alpha[0]^2-3*lambda*a[2]*alpha[0]*alpha[1]^2+a[3]*alpha[0]^4+lambda*w*alpha[1]^2+a[2]*alpha[0]^3-w*alpha[0]^2 = 0

``

eq1 := lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1] = 0

eq2 := lambda^2*beta[0]*a[5]*alpha[1]^2+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*alpha[1]^2*lambda*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]+12*mu*alpha[1]^2*alpha[0]^2*a[3]-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2+5*lambda^2*beta[0]*alpha[1]^4*a[4]-4*mu*lambda*alpha[1]^4*a[3]-2*mu*w*alpha[1]^2+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*w*alpha[0]*beta[0]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3] = 0

NULL

eq3 := (1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]-9*mu^2*alpha[1]^2*a[1]*(1/4)-w*beta[0]^2+3*beta[0]^2*alpha[0]*a[2]-(1/4)*lambda*beta[0]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4] = 0

eq4 := 2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0]-2*k^2*a[1]*alpha[1]*beta[0]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]-4*lambda*beta[0]*alpha[1]^3*a[3]-lambda*alpha[1]^3*mu*a[5]-(1/2)*lambda*beta[0]*alpha[1]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4] = 0

eq5 := -6*mu^2*alpha[1]^3*a[5]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+3*beta[0]^2*alpha[1]*a[2]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+8*mu*beta[0]*alpha[1]^3*a[3]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)-10*lambda*beta[0]^2*alpha[1]^3*a[4]-2*lambda*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5] = 0

eq6 := -14*mu^2*beta[0]*a[5]*alpha[1]^2+beta[0]^3*a[2]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3]-lambda*beta[0]^3*a[5]+mu*beta[0]^2*a[1]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4] = 0

eq7 := 4*beta[0]^3*alpha[1]*a[3]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*mu*a[5]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+20*mu*beta[0]^2*alpha[1]^3*a[4]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4] = 0

eq8 := 4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+beta[0]^4*a[3]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+20*mu*beta[0]^3*alpha[1]^2*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4)+5*beta[0]^4*alpha[0]*a[4]+3*mu*beta[0]^3*a[5]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*alpha[1]^4*a[4] = 0

eq9 := (10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+5*beta[0]^4*alpha[1]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5] = 0

eq10 := (2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+beta[0]^5*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4] = 0

 

with(LargeExpressions)

COEFFS := solve({eq0, eq1, eq10, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {w, a[1], a[2], alpha[0], alpha[1], beta[0]})

Download by_hand!.mw

How i can get this special parameter i try to do substitution in another mw file but stilli can't reach this parameter and without this parameter my PDE is not give me zero so i have to find this r[i] parameter, some letter of my mw file are not similar to paper but r[i]=l[i] as mention is paper al clear and i found all structure just this remain, i am looking for equation (14), thanks for any help 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

pde1 := a*(diff(u(x, y, z, t), x, t))-((a^4-6*a^2*b^2+b^4)*(1/16))*(diff(u(x, y, z, t), `$`(x, 4)))-(1/4)*(3*(-a^2+b^2))*(diff(u(x, y, z, t)^2, `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))+lambda*(diff(u(x, y, z, t), `$`(z, 2)))+mu*(diff(u(x, y, z, t), y, z))+mu^2*(diff(u(x, y, z, t), `$`(y, 2)))/(4*lambda)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+mu*(diff(diff(u(x, y, z, t), y), z))+(1/4)*mu^2*(diff(diff(u(x, y, z, t), y), y))/lambda

(3)

Tr := {beta = alpha, delta = alpha, mu = 2*lambda}

{beta = alpha, delta = alpha, mu = 2*lambda}

(4)

pde := subs(Tr, pde1)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y))

(5)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = T*u(x, y, z, t)))/T, T) end proc, expand(pde))

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^4+(3/8)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^2*b^2-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*b^4+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y)), (3/2)*(diff(u(x, y, z, t), x))^2*a^2-(3/2)*(diff(u(x, y, z, t), x))^2*b^2+(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*a^2-(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*b^2

(6)

NULL

eq17 := u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)/(2*a^2-2*b^2)

``NULL

betai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

(7)

W := w[i] = ((a^4-6*a^2*b^2+b^4)*k[i]^2-16*lambda*l[i]^2+(-32*lambda*r[i]-16*alpha)*l[i]-16*lambda*r[i]^2-16*alpha*r[i]-16*alpha)/(16*a)

AA := A[12] = (16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]-k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))/(16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]+k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))

F2 := 1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

(8)

NULL

F22 := f(x, y, z, t) = 1+exp((a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/(16*a))+exp((a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/(16*a))

eq := eval(eq17, F22)

u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((k[1]^2*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]^2*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))-(k[1]*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2)/(2*a^2-2*b^2)

(9)

pdetest(eq, pde)

Download fusion-undon.mw

A lot of time i finded but i have a dubt about this why this is happen each time number of equation for finding parameter a_12 is 4 but this time is 28 which i thoght some thing must be mistake also the author of paper use  u=2(ln(f))_xx which is wronge and not satisfy but i try to find R which is strange again is not number contain parameter but is satisfy also in equation 14 i don't know each i is 2 or 1 or it can be i remain itself?

thanks for any help ?

t1.mw

In this example by applying the substitution i can get half of paicewise function but how get another  half ? i am looking for B_rs as Piecewise function ?

restart

eij := ((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-(2*(-3*k[j]*(k[i]-k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-(2*(3*k[j]*(k[i]+k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)

((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-2*(-(3/2)*k[j]*(k[i]-k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-2*((3/2)*k[j]*(k[i]+k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

(1)

eval(eij, k[j] = b*k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, b = k[j]/k[i]); Bij := (%-1)/(k[i]*k[j])

((-3*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*(-(3/2)*b*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*((3/2)*b*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

 

series(1+((-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2))*k[i]^2+O(k[i]^4),k[i],4)

 

1+(-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j])

(2)

simplify((-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j]))

6*l[j]*l[i]*(l[i]+l[j])/((l[i]-l[j])^2*beta)

(3)


Download Lim.mw

1 2 3 4 5 6 7 Last Page 1 of 45