Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

This is an ode from textbook. dsolve gives new error I have not seen before. 

Maple 2024.2 on windows 10.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1839 and is the same as the version installed in this computer, created 2024, December 2, 10:11 hours Pacific Time.`

restart;

libname;

"C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib", "C:\Program Files\Maple 2024\lib"

ode:=y(x)^2*diff(y(x),x$3)-(3*y(x)*diff(y(x),x)+2*x*y(x)^2 )*diff(y(x),x$2)+(2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+3*x^2*y(x)^2)*diff(y(x),x)+x^3*y(x)^3=0;

y(x)^2*(diff(diff(diff(y(x), x), x), x))-(3*y(x)*(diff(y(x), x))+2*x*y(x)^2)*(diff(diff(y(x), x), x))+(2*(diff(y(x), x))^2+2*x*y(x)*(diff(y(x), x))+3*x^2*y(x)^2)*(diff(y(x), x))+x^3*y(x)^3 = 0

dsolve(ode);

Error, (in factor) too many levels of recursion

infolevel[dsolve]:=5;

5

dsolve(ode);

Methods for third order ODEs:

--- Trying classification methods ---

trying 3rd order ODE linearizable_by_differentiation

differential order: 3; trying a linearization to 4th order

trying differential order: 3; missing variables

trying differential order: 3; exact nonlinear

trying 3rd order, integrating factor of the form mu(y'') for some mu

Trying the formal computation of integrating factors depending on any 2 of [x, y, y', y'']

         *** Sublevel 2 ***

         Methods for first order ODEs:

         --- Trying classification methods ---

         trying a quadrature

         trying 1st order linear

         <- 1st order linear successful

Successful computation of 3 integrating factors: [x*exp(-1/2*x^2*(I*2^(1/2)+1))*KummerM(3/4+1/8*I*2^(1/2),3/2,I*2^(1/2)*x^2)/y(x), x*exp(-1/2*x^2*(I*2^(1/2)+1))*KummerU(3/4+1/8*I*2^(1/2),3/2,I*2^(1/2)*x^2)/y(x), x*exp(-1/2*x^2*(I*2^(1/2)+1))*(Int(x*KummerM(3/4+1/8*I*2^(1/2),3/2,I*2^(1/2)*x^2)*exp(-1/2*x^2*(I*2^(1/2)-1)),x)*KummerU(3/4+1/8*I*2^(1/2),3/2,I*2^(1/2)*x^2)-Int(x*KummerU(3/4+1/8*I*2^(1/2),3/2,I*2^(1/2)*x^2)*exp(-1/2*x^2*(I*2^(1/2)-1)),x)*KummerM(3/4+1/8*I*2^(1/2),3/2,I*2^(1/2)*x^2))/y(x)]

Attempting computing related first integrals...

Error, (in factor) too many levels of recursion

 

 

Download dsolve_factor_dec_24_2024.mw

tracelast;  gives long output with this at end

#(IntegrationTools:-Indefinite:-Polynomial,14): return poly/primitivepart*thisproc(primitivepart,var)
 IntegrationTools:-Indefinite:-Polynomial called with arguments: (8*I)*x*KummerM(3/4+((1/8)*I)*2^(1/2), 3/2, I*2^(1/2)*x^2)*x1*2^(1/2)-(3*I)*2^(1/2)*KummerM(3/4+((1/8)*I)*2^(1/2), 3/2, I*2^(1/2)*x^2)*y+(7*I)*2^(1/2)*KummerM(((1/8)*I)*2^(1/2)+7/4, 3/2, I*2^(1/2)*x^2)*y+12*x^2*KummerM(3/4+((1/8)*I)*2^(1/2), 3/2, I*2^(1/2)*x^2)*y+8*x*KummerM(3/4+((1/8)*I)*2^(1/2), 3/2, I*2^(1/2)*x^2)*x1+4*KummerM(((1/8)*I)*2^(1/2)+7/4, 3/2, I*2^(1/2)*x^2)*y, x1, nofactor = false
 #(IntegrationTools:-Indefinite:-Polynomial,8): newpoly := factor(poly)
Error, (in factor) too many levels of recursion
 locals defined as: p = p, primitivepart = primitivepart, base = base, exponent = exponent, subpolys = subpolys, change = change, newpoly = newpoly, u = u

Also, this error can not be cought using try/catch. 

I'm working on solving a system of ODEs in Maple that models an epidemic scenario, tracking the number of susceptible, infected, and recovered individuals over time. Here's what I've done so far:
Download sir_model.mw

Created a table of results at daily intervals with the following code:

results := [seq([t = tval, s = round(evalf(sol(tval)[2][1])), i = round(evalf(sol(tval)[2][2])),r = round(evalf(sol(tval)[2][2]))], tval = 0 .. 50)];

printf("%-10s %-15s %-15s %-15s\n", "Day", "Infected", "Recovered");
printf("---------------------------------------------\n");
for entry in results do
    printf("%-10d %-15d %-15d %-15d\n", entry[t],entry[s], entry[i], entry[r]);
end do;

but I encountered an error (in fprintf) integer expected for integer format

Maple's Student:-ODEs:-ODESteps solves an ode by doing change of variable on the independent variable, but the resulting ode is wrong and final answer is wrong.

Here is one such example

restart;
ode:=diff(diff(y(x),x),x)*sin(x)^2 = 2*y(x);
Student:-ODEs:-ODESteps(ode):

But this result is wrong. First of all, we can not have both x and t  in the same ode. This is what dchange gives

ode:=diff(y(x),x$2)*sin(x)^2-2*y(x)=0;
tr:={PDEtools:-Solve(t=ln(x),x)};
simplify(PDEtools:-dchange(tr,ode,[t]))

It looks like Student:-ODEs:-ODESteps is trying to solve  sin(x)^2*y'' + 2 y=0 as EULER type ode.

But Euler type ode will look like  x^2*y'' +2 y=0  

It seems to have confused sin(x)^2 with x^2. This change of variable it used only works for EULER type ode with polynomial coefficient, not trig coefficients.

Maple 2024.2 on Windows 10

 

restart;

Let x be some name:

x := asdf;

asdf

I wish to make a new name, y, whose value is the first character in x:

convert(x, string):
y := convert(%[1], name);

a

That works but seems too convoluted.  Is there a better way of doing that?

i already use this method for a lot of equation but this time something not normal hapening what is problem?

``

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

``

eq0 := -4*alpha*k^2*m^2*n^2*A[0]^2+4*beta*k*m*n^2*A[0]^3-4*gamma*k*m*n^2*A[0]^3+4*delta^2*m*n^2*A[0]^2-4*n^2*sigma*A[0]^4-4*m*n^2*w*A[0]^2 = 0

eq1 := -8*alpha*k^2*m^2*n^2*A[0]*A[1]+12*beta*k*m*n^2*A[0]^2*A[1]-12*gamma*k*m*n^2*A[0]^2*A[1]+8*delta^2*m*n^2*A[0]*A[1]-16*n^2*sigma*A[0]^3*A[1]+2*a*alpha*m*n*A[0]*A[1]-8*m*n^2*w*A[0]*A[1] = 0

eq2 := -4*alpha*k^2*m^2*n^2*A[1]^2+12*beta*k*m*n^2*A[0]*A[1]^2-12*gamma*k*m*n^2*A[0]*A[1]^2+4*delta^2*m*n^2*A[1]^2-24*n^2*sigma*A[0]^2*A[1]^2+a*alpha*m^2*A[1]^2+3*alpha*b*m*n*A[0]*A[1]-4*m*n^2*w*A[1]^2 = 0

eq3 := 4*beta*k*m*n^2*A[1]^3-4*gamma*k*m*n^2*A[1]^3-16*n^2*sigma*A[0]*A[1]^3+alpha*b*m^2*A[1]^2+alpha*b*m*n*A[1]^2+4*alpha*c*m*n*A[0]*A[1] = 0

eq4 := -4*n^2*sigma*A[1]^4+alpha*c*m^2*A[1]^2+2*alpha*c*m*n*A[1]^2 = 0

C := solve({eq0, eq1, eq2, eq3, eq4}, {a, b, c, `__ `*A[0]})

Warning, solving for expressions other than names or functions is not recommended.

 

(1)
 

NULL

Download problem.mw

It is not that this a terribly difficult to work out, but I feel I am probably missing something. I need to check if a 3D point lies on a 3D line. What is a good approach here. I started of with the idea all alpha's are equal. but there are exceptions. See P3 and P4

restart

NULL

l := `<,>`(3+2*alpha, 1+6*alpha, 4-5*alpha)

Vector[column](%id = 36893489809910741940)

(1)

NULL

P := [9, 19, -11]

[9, 19, -11]

(2)

seq(solve({l[i] = P[i]}, alpha), i = 1 .. 3)

{alpha = 3}, {alpha = 3}, {alpha = 3}

(3)

l1 := `<,>`(3+2*alpha, 1+0*alpha, 4-5*alpha)

Vector[column](%id = 36893489809910721460)

(4)

P1 := [9, 1, -11]

[9, 1, -11]

(5)

seq(solve({l1[i] = P1[i]}, alpha), i = 1 .. 3)

{alpha = 3}, {alpha = alpha}, {alpha = 3}

(6)

l2 := `<,>`(3+2*alpha, 1+0*alpha, 4-0*alpha)

Vector[column](%id = 36893489809910705556)

(7)

P2 := [9, 1, 4]

[9, 1, 4]

(8)

seq(solve({l2[i] = P2[i]}, alpha), i = 1 .. 3)

{alpha = 3}, {alpha = alpha}, {alpha = alpha}

(9)

l3 := `<,>`(3+2*alpha, 0+0*alpha, 4-0*alpha)

Vector[column](%id = 36893489809963852012)

(10)

P3 := [9, 0, 4]

[9, 0, 4]

(11)

seq(solve({l3[i] = P3[i]}, alpha), i = 1 .. 3)

{alpha = 3}, {alpha = alpha}

(12)

P4 := [9, 0, -2]

[9, 0, -2]

(13)

seq(solve({l3[i] = P4[i]}, alpha), i = 1 .. 3)

{alpha = 3}, {alpha = alpha}

(14)

 

Download 2024-12-21_Q_3D_point_lies_on_3D_line.mw

NULLComplex Numbers

 

Key Skills 11-48

NULLc11 := 2-3*i+(6+8*i)"(=)"8+5*i

c12 := 4+5*i-8+2*i"(=)"-4+7*i

c13 := -3+2*i-4+4*i"(=)"-7+6*i

c14 := 3-4*i+(3+4*i) = 6NULL

c15 := 2-5*i-8-6*i"(=)"-6-11*i

c16 := -8+4*i-2+2*i"(=)"-10+6*i

c17 := 3*(2-6*i)"(=)"6-18*i

c18 := -4*(2+8*i)"(=)"-8-32*i

NULLc19 := 2*i(2-3*i) = 2*i(2-3*i)NULL

c20 := 3*i*(-3+4*i) = 3*i*(-3+4*i)

c21 := (3-4*i)*(2+i) = (3-4*i)*(2+i)NULL

c22 := (5+3*i)*(2-i) = (5+3*i)*(2-i)

``

``

Download 1.3-Complex_Numbers_bad.mw

I'm trying to get my problems in standard form  a + bi . Questions 19 - 22 are wrong.

As a Maple beginner, I am now interested in symbolic calculations in Maple. As before, I set a problem from a subject area that interests me in order to learn from professional answers.

Determine all regular square (n;n) matrices (determinant not equal to zero) that are commutable with every regular (n;n) matrix with respect to matrix multiplication.

(I know the solution from long ago.)

2024-12-20_Q_simplification_Question.mw
Solve the general cubic. Apply values and simplify. 

Could someone show how Maple simplifies to the value of X=3? I tried doing it manually and I could not figure it out. 

Also is there a Help assistant to see the setps?

restart

 

 

X^3+a*X=b

X^3+X*a = b

(1)

 

 

sol:=solve(X^3+a*X=b,[X])

[[X = (1/6)*(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)-2*a/(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)], [X = -(1/12)*(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)+a/(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)+((1/2)*I)*3^(1/2)*((1/6)*(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)+2*a/(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3))], [X = -(1/12)*(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)+a/(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)-((1/2)*I)*3^(1/2)*((1/6)*(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3)+2*a/(108*b+12*(12*a^3+81*b^2)^(1/2))^(1/3))]]

(2)

vals:=[a=6,b=45]

[a = 6, b = 45]

(3)

Nans:=(map(eval,sol,vals))

[[X = (1/6)*(4860+12*166617^(1/2))^(1/3)-12/(4860+12*166617^(1/2))^(1/3)], [X = -(1/12)*(4860+12*166617^(1/2))^(1/3)+6/(4860+12*166617^(1/2))^(1/3)+((1/2)*I)*3^(1/2)*((1/6)*(4860+12*166617^(1/2))^(1/3)+12/(4860+12*166617^(1/2))^(1/3))], [X = -(1/12)*(4860+12*166617^(1/2))^(1/3)+6/(4860+12*166617^(1/2))^(1/3)-((1/2)*I)*3^(1/2)*((1/6)*(4860+12*166617^(1/2))^(1/3)+12/(4860+12*166617^(1/2))^(1/3))]]

(4)

simplify(Nans)

[[X = 3], [X = (1/4)*(I*3^(1/2)*(180+44*17^(1/2))^(2/3)+(8*I)*3^(1/2)-(180+44*17^(1/2))^(2/3)+8)/(180+44*17^(1/2))^(1/3)], [X = -3/2-((1/2)*I)*51^(1/2)]]

(5)
 

 

Download 2024-12-20_Q_simplification_Question.mw

In a plane, equilateral triangles D(i) with side lengths a(i)= 2*i−1, i = 1; 2; 3; ... are arranged along a straight line g in such a way that the "right" corner point of triangle D(k) coincides with the "left" corner point of triangle D(k+1) and that the third corner points all lie in the same half-plane generated by g. Determine the curve/function on which the third corner points lie!

Given the center x1 of a circle in R^2 with radius d12, and a point p2 on the circle, so that d12=||p2-x1||, denote the points on the line segment from x1 to p2 as x1(t) = x1+t*v12, with t=0..d12, and v12 =( p2-x1)/d12.  I want to animate the points x1(t) moving along the line segment from x1 to p2 and the corresponding circles of decreasing radius, with center x(t) and radius d12-t, so that p2 remains on the circle.

I can animate the points along the line segment from x1 to p2 using ‘style=point, symbol=solidcircle’.

I would like to use plottools-circle, to plot the circles. I have also tried the following type commands for the circles of decreasing radius.

Plot([x1(1)+t*v12(1)+(d12-t)*cos(theta)*v12(1)+ (d12-t)*sin(theta)*u12(1), x1(2)+ +t*v12(2)+(d12-t)*d12*cos(theta)*v12(2)+(d12-t)*sin(theta)*u12(2), theta=0..2*PI]

where u12 is a unit vector orthogonal to v12.

I have not been able to combine the two plots into an animation. Thank you

Hey Guys, 

I have to solve multiple system of equations under some restrictions given as inequalities. Sometimes solve is not able to find the result in houres so I tryd to break the problem in half. So in the first step I just want to solve my 8 polynomial equations with 8 variables and in a second step I want so take the solutions, bring them together with the set of inequalities and solve it again. Since also some sets of equations are to hard for the simple solve command I got the advice from people of this plattform to try PolynomialSystem with the diffrent engines. However I have the feeling they make misstakes and now Im not sure If I can trust my results. 

Attached you can find a file with an example. In the beginning I solve equations and restrictions together and there is a solutions. Then I tryd to solve only the equations with PolynomialSystem and the the four known engines and the eniges traditional and backsolve dont find the solution which as we saw before exist. When a soultions holds under restrictions it should always appear if I omit the restirctions. When I use the enige triade and groebner then the right solution is there. 
However in some other cases it feels the other way round.
So to me it looks like no matter which engine I take, I can never 100% trust my results. Did I something wrong? Whats the reason for those mistakes? Furthermore backsolve gives me 7 solutions, but solutions 2 and 7 are the same. I also recognized, that there is a diffrence between putting in the variable vars as a list or a set. What happens, if I dont specify which engine should be used?

I am happy about any advice. Thank you in advance.

Regards

Felix

restart; equations := {-y*(m-p) = 0, ((-x-y+1)*k+x)*n+s*y-t = 0, (k-x-y)*t-k*p+y = 0, (-m+n+y)*x+m-1 = 0, -(x+y-1)*(p-t)*k+(-x-y+1)*t+x*p = 0, y^2+(-m-1)*y+1+x*(p-1) = 0, (-x-y+1)*t+(-m+1)*x+y*n+m-1 = 0, -k*n+s*x = 0}; restrictions := {0 < k, 0 < m, 0 < s, 0 < x, 0 < y, 0 < n+(t-1)*p, 0 < (m*y-1)*n+(1-p)*(m*x-m+1), 0 < (m*x-m-t+1)*p+m*y*(t-n), 1 < x+y, k < 1, m < 1, s < t, t < 1}; vars := indets(equations); evalf(solve(`union`(equations, restrictions), vars)); Sol_w := SolveTools:-PolynomialSystem(equations, vars); Sol_traditional := SolveTools:-PolynomialSystem(equations, vars, engine = traditional); nops([Sol_traditional]); Sol_backsolve := SolveTools:-PolynomialSystem(equations, vars, engine = backsolve); nops([Sol_backsolve]); Sol_triade_1 := SolveTools:-PolynomialSystem(equations, vars, engine = triade); nops([Sol_triade_1]); Sol_groebner := SolveTools:-PolynomialSystem(equations, vars, engine = groebner); nops([Sol_groebner])

{-y*(m-p) = 0, ((-x-y+1)*k+x)*n+s*y-t = 0, (k-x-y)*t-k*p+y = 0, (-m+n+y)*x+m-1 = 0, -(x+y-1)*(p-t)*k+(-x-y+1)*t+x*p = 0, y^2+(-m-1)*y+1+x*(p-1) = 0, (-x-y+1)*t+(-m+1)*x+y*n+m-1 = 0, -k*n+s*x = 0}

 

{k, m, n, p, s, t, x, y}

 

{k = 0.536796024e-1, m = .241141717, n = .54019322, p = .241141717, s = 0.35770767e-1, t = .4477103163, x = .8106439941, y = .6370663217}

 

{k = 1, m = m, n = 1, p = 0, s = 1, t = 1, x = 1, y = 0}, {k = 1, m = 1, n = 0, p = 1, s = t, t = t, x = 0, y = 1}, {k = k, m = 1, n = 0, p = 1, s = 1, t = 1, x = 0, y = 1}, {k = 1, m = 1, n = 0, p = 1, s = 0, t = 0, x = x, y = 1}, {k = 1/3, m = -1, n = 3, p = -1, s = 2, t = 2, x = 1/2, y = 0}, {k = 1/3, m = -1, n = 2, p = -1, s = 2/3, t = 2, x = 1, y = -1}, {k = -(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+(2/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3+(16/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-7/9, m = (4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(20/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(17/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, n = (11/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(53/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(55/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(152/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-61/3, p = (4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(20/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(17/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, s = -(8/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+(40/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3+(35/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2-(127/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+58/9, t = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(8/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(7/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+1/3, x = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(8/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+4/3, y = RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)}

 

{k = 1, m = m, n = 1, p = 0, s = 1, t = 1, x = 1, y = 0}, {k = 1/3, m = -1, n = 3, p = -1, s = 2, t = 2, x = 1/2, y = 0}, {k = k, m = 1, n = 0, p = 1, s = 1, t = 1, x = 0, y = 1}, {k = 1, m = 1, n = 0, p = 1, s = s, t = s, x = 0, y = 1}, {k = 1/3, m = -1, n = 2, p = -1, s = 2/3, t = 2, x = 1, y = -1}, {k = 1, m = 1, n = 0, p = 1, s = 0, t = 0, x = x, y = 1}

 

6

 

{k = 1, m = m, n = 1, p = 0, s = 1, t = 1, x = 1, y = 0}, {k = 1/3, m = -1, n = 3, p = -1, s = 2, t = 2, x = 1/2, y = 0}, {k = k, m = 1, n = 0, p = 1, s = 1, t = 1, x = 0, y = 1}, {k = 1, m = 1, n = 0, p = 1, s = s, t = s, x = 0, y = 1}, {k = 1/3, m = -1, n = 2, p = -1, s = 2/3, t = 2, x = 1, y = -1}, {k = 1, m = 1, n = 0, p = 1, s = 0, t = 0, x = x, y = 1}, {k = 1/3, m = -1, n = 3, p = -1, s = 2, t = 2, x = 1/2, y = 0}

 

7

 

{k = 1, m = 1, n = 0, p = 1, s = 0, t = 0, x = x, y = 1}, {k = 1, m = m, n = 1, p = 0, s = 1, t = 1, x = 1, y = 0}, {k = k, m = 1, n = 0, p = 1, s = 1, t = 1, x = 0, y = 1}, {k = 1, m = 1, n = 0, p = 1, s = t, t = t, x = 0, y = 1}, {k = -(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+(2/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3+(16/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-7/9, m = (4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(20/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(17/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, n = (11/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(53/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(55/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(152/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-61/3, p = (4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(20/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(17/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, s = -(8/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+(40/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3+(35/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2-(127/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+58/9, t = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(8/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(7/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+1/3, x = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(8/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+4/3, y = RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)}, {k = 1/3, m = -1, n = 2, p = -1, s = 2/3, t = 2, x = 1, y = -1}, {k = 1/3, m = -1, n = 3, p = -1, s = 2, t = 2, x = 1/2, y = 0}

 

7

 

{k = 1, m = m, n = 1, p = 0, s = 1, t = 1, x = 1, y = 0}, {k = 1, m = 1, n = 0, p = 1, s = t, t = t, x = 0, y = 1}, {k = k, m = 1, n = 0, p = 1, s = 1, t = 1, x = 0, y = 1}, {k = 1, m = 1, n = 0, p = 1, s = 0, t = 0, x = x, y = 1}, {k = 1/3, m = -1, n = 3, p = -1, s = 2, t = 2, x = 1/2, y = 0}, {k = 1/3, m = -1, n = 2, p = -1, s = 2/3, t = 2, x = 1, y = -1}, {k = -(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+(2/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3+(16/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-7/9, m = (4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(20/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(17/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, n = (11/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(53/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(55/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(152/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-61/3, p = (4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(20/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(17/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, s = -(8/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+(40/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3+(35/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2-(127/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+58/9, t = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(8/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(7/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+1/3, x = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3-(8/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2+(4/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)+4/3, y = RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)}

 

7

(1)

evalf(allvalues({k = -(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4+2*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/9)+16*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/9)+(1/9)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-7/9, m = 4*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4*(1/3)-20*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/3)-17*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/3)+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, n = 11*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4*(1/3)-53*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/3)-55*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/3)+152*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)*(1/3)-61/3, p = 4*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4*(1/3)-20*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/3)-17*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/3)+21*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)-28/3, s = -8*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4*(1/9)+40*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/9)+35*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/9)-127*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)*(1/9)+58/9, t = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-4*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/3)-8*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/3)+7*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)*(1/3)+1/3, x = (1/3)*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^4-4*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^3*(1/3)-8*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)^2*(1/3)+4*RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)*(1/3)+4/3, y = RootOf(_Z^5-4*_Z^4-9*_Z^3+10*_Z^2+6*_Z-5)}))

{k = 0.536796024e-1, m = .241141717, n = .54019322, p = .241141717, s = 0.35770767e-1, t = .4477103163, x = .8106439941, y = .6370663217}, {k = .7943583912, m = 1.011543377, n = .16794280, p = 1.011543377, s = -.463558437, t = -.4040771797, x = -.287788440, y = .8837112597}, {k = -5.038767243, m = 3.694058367, n = 0.9373027e-1, p = 3.694058367, s = .299187114, t = 2.728412223, x = -1.578565716, y = 5.306977937}, {k = .2033642547, m = -26.40026363, n = -63.64948932, p = -26.40026363, s = 17.99511944, t = -2.562622110, x = -.719307867, y = -.8433142428}, {k = 2.542920564, m = -.546480183, n = 1.84762297, p = -.546480183, s = 1.244592174, t = .7905767063, x = 3.775017982, y = -1.984441276}

(2)
 

NULL

Can_I_trust_the_diffrent_eniges_of_Polynomial_Systems.mw

l45 := (x + 7)(x - 1) = (1 + x)^2;
                             "(->)"

Error, (in solve) cannot solve for an unknown function with other operations in its arguments

This is my first time working with plotting data from a matrix. However, with the help of a friends on MaplePrimes, I learned how to plot the data in both Maple and MATLAB. Despite this, I am having trouble with visualization. When I change the delta value, my function experiences vibrations or noise, which is clearly visible in the plot. But when I change delta, I encounter errors with my matrix data. How can I fix this problem? and there is any way for get better visualization by Explore ? also How show this vibration or noise in 2D?

restart;

randomize():

local gamma;

gamma

(1)

currentdir(kernelopts(':-homedir'))

NULL

T3 := (B[1]*(tanh(2*n^2*(delta^2-w)*k*t/((k*n-1)*(k*n+1))+x)-1))^(1/(2*n))*exp(I*(-k*x+w*t+delta*W(t)-delta^2*t))

(B[1]*(tanh(2*n^2*(delta^2-w)*k*t/((k*n-1)*(k*n+1))+x)-1))^((1/2)/n)*exp(I*(-k*x+w*t+delta*W(t)-delta^2*t))

(2)

NULL

params := {B[1]=1,n=2,delta=1,w=1,k=3 };

{delta = 1, k = 3, n = 2, w = 1, B[1] = 1}

(3)

NULL

insert numerical values

solnum :=subs(params, T3);

(tanh(x)-1)^(1/4)*exp(I*(-3*x+W(t)))

(4)

CodeGeneration['Matlab']('(tanh(x)-1)^(1/4)*exp(I*(-3*x+W(t)))')

Warning, the function names {W} are not recognized in the target language

 

cg = ((tanh(x) - 0.1e1) ^ (0.1e1 / 0.4e1)) * exp(i * (-0.3e1 * x + W(t)));

 

N := 100:

use Finance in:
  Wiener := WienerProcess():
  P := PathPlot(Wiener(t), t = 0..10, timesteps = N, replications = 1):
end use:

W__points := plottools:-getdata(P)[1, -1]:
t_grid := convert(W__points[..,1], list):
x_grid := [seq(-2..2, 4/N)]:

T, X := map(mul, [selectremove(has, [op(expand(solnum))], t)])[]:

ST := unapply(eval(T, W(t)=w), w)~(W__points[.., 2]):
SX := evalf(unapply(X, x)~(x_grid)):

STX := Matrix(N$2, (it, ix) -> ST[it]*SX[ix]);

_rtable[36893490640185799852]

(5)

opts := axis[1]=[tickmarks=[seq(k=nprintf("%1.1f", t_grid[k]), k=1..N, 40)]],
        axis[2]=[tickmarks=[seq(k=nprintf("%1.1f", x_grid[k]), k=1..N, 40)]],
        style=surface:

DocumentTools:-Tabulate(
  [
    plots:-matrixplot(Re~(STX), opts),
    plots:-matrixplot(Im~(STX), opts),
plots:-matrixplot(abs~(STX), opts)
  ]
  , width=60
)

"Tabulate"

(6)

MatlabFile := cat(currentdir(), "/ST2.txt"); ExportMatrix(MatlabFile, STX, target = MATLAB, format = rectangular, mode = ascii, format = entries)

421796

(7)

NULL

Download data-analysis.mw

First 16 17 18 19 20 21 22 Last Page 18 of 45