Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

Maple int gives one result, called the "default" result unless one uses method=_RETURNVERBOSE to look for other results.

First, how does Maple decide what is "default" i.e. given all the methods listed, what method then used for "default".

Here is an example where default result makes it hard to solve for a differential equation. The integrand is 

1/(y+sqrt(y))

Maple int default gives anti as ln(y - 1) + 2*arctanh(sqrt(y))  which is complex valued for all y. The arctanh is only defined for argument between -1 and 1 also. Having sqrt there makes it now valid for 0 to 1. But ln(y-1) is negative in this region also. Hence complex. 

Using method=_RETURNVERBOSE we see much better anti derivatives hidding there and given by "derivativedivides" and "meijerg" as 2*ln(1 + sqrt(y)) which is complex valued only for negative y and real for all positive y. Same for "trager"  ln(2*sqrt(y) + 1 + y)

So it would have been much better if Maple picks the best anti-derivative automatically and use that for default instead and give this to the user.

Why is this important? Try to solve   the ode y'/(y+sqrt(y))=2 with IC y(0)=1 and you see we can't solve for the constant of integration using  ln(y - 1) + 2*arctanh(sqrt(y))=2x+c since at y=1 we get division by zero. If Maple had returned 2*ln(1 + sqrt(y)) instead then solving for constant of integration is trivial now since anti is real and defined at y=1

This is just one example of many.

My question is, How does Maple integrate decide what is "default" and why it does not try harder to pick better one (using number of known metrices for this sort of thing) from the other solvers it already has access to?  

What is the point of having all these other nice integrate methods, if the default used is not the "best" one?

Should user then always use method=_RETURNVERBOSE and then try to pick the "best" one themselves? This will be too much work for user to do.

I think Maple should do this automatically. Btw, I tried few other CAS integrators and the all give the better result given above by "meijerg" automatically.

Maple 2024

 

Update

Here is a quick function, called it smart_int() which returns the anti-derivative with the smallest leaf size from Maple.

Ofcourse smallest leaf size does not mean the anti-derivative is necessarily the "best" using other measures. But this function already allowed me to solve some ode's I could not solve before using Maple's defaullt int result because it made solving for constant of integration easier now.

Feel free to improve and change. If you find any bugs please let me know

The test here shows the result of smart_int compared to int on few integrals. You see on many of them smart_int gives smaller result. Additional criteria for selection can ofcourse be added and I will probably do that.

For example, do not pick ones with complex numbers if there is one without even though leaf size is smaller. This check has been added also.

Check the last integral in this test. The difference is so large. 


 

restart:

8456

#smart_int picks the anti-derivative with smallest leaf count
#version June 1, 2024. Maple 2024
#change: added check not to pick one with complex even is smaller
#change: added percentage reduction

smart_int:=proc(integrand,x::symbol)
local anti,result_of_int,a,b;

    local F:=proc(a,b)::truefalse;       
       if (has(a,I) and has(b,I)) or ( not has(a,I)  and not has(b,I)) then
           evalb(MmaTranslator:-Mma:-LeafCount(a)<MmaTranslator:-Mma:-LeafCount(b));
       elif has(a,I) then
           false;
       else
           true;
       fi;
    end proc;

    try
        anti := timelimit(60,int(integrand,x,'method'=':-_RETURNVERBOSE'));
        if evalb(op(0,anti)='int') then
           RETURN(anti);
        fi;   
    catch:
        RETURN(Int(integrand,x));
    end try;
    
    result_of_int := select(type,anti,string=algebraic);
    if nops(result_of_int)=0 then
        RETURN(Int(integrand,x));
    fi;

    result_of_int := map(X->rhs(X),result_of_int);
    result_of_int := sort(result_of_int,(a,b)->F(a,b));

    #return the one with smallest leaf size
    RETURN(result_of_int[1]);
    
end proc:

#TESTS

tests:=[1/(x+sqrt(x)),1/(sin(x)),1/(cos(x)),sin(x)/(sin(x)+1),1/((1+x)^(2/3)-(1+x)^(1/2)),1/x^3/(1+x)^(3/2),1/(1-x)^(7/2)/x^5,x*((-a+x)/(b-x))^(1/2),x/(-x^2+5)/(-x^2+3)^(1/2),exp(arcsin(x))*x^3/(-x^2+1)^(1/2),x*arctan(x)^2*ln(x^2+1),(x^2+1)/(-x^2+1)/(x^4+1)^(1/2),(a+b*f*x+b*sin(f*x+e))/(a+a*cos(f*x+e)),x*ln(1/x+1),1/x/(x^5+1)];
result:=map(X->[Int(X,x),int(X,x),smart_int(X,x)],tests):
for item in result do
    print("###################################\nintegral",item[1]);
    print("maple default result ",item[2]);
    print("smart int result ",item[3]);
    PERCENTAGE:=MmaTranslator:-Mma:-LeafCount(item[3])*100/MmaTranslator:-Mma:-LeafCount(item[2]):
    print("smart int percentage size relative to default ",sprintf("%.2f",PERCENTAGE));
od:
 

[1/(x+x^(1/2)), 1/sin(x), 1/cos(x), sin(x)/(sin(x)+1), 1/((1+x)^(2/3)-(1+x)^(1/2)), 1/(x^3*(1+x)^(3/2)), 1/((1-x)^(7/2)*x^5), x*((-a+x)/(b-x))^(1/2), x/((-x^2+5)*(-x^2+3)^(1/2)), exp(arcsin(x))*x^3/(-x^2+1)^(1/2), x*arctan(x)^2*ln(x^2+1), (x^2+1)/((-x^2+1)*(x^4+1)^(1/2)), (a+b*f*x+b*sin(f*x+e))/(a+a*cos(f*x+e)), x*ln(1/x+1), 1/(x*(x^5+1))]

"###################################
integral", Int(1/(x+x^(1/2)), x)

"maple default result ", ln(x-1)+2*arctanh(x^(1/2))

"smart int result ", 2*ln(x^(1/2)+1)

"smart int percentage size relative to default ", "72.73"

"###################################
integral", Int(1/sin(x), x)

"maple default result ", ln(csc(x)-cot(x))

"smart int result ", ln(tan((1/2)*x))

"smart int percentage size relative to default ", "62.50"

"###################################
integral", Int(1/cos(x), x)

"maple default result ", ln(sec(x)+tan(x))

"smart int result ", ln(sec(x)+tan(x))

"smart int percentage size relative to default ", "100.00"

"###################################
integral", Int(sin(x)/(sin(x)+1), x)

"maple default result ", 2/(tan((1/2)*x)+1)+x

"smart int result ", (x*tan((1/2)*x)+2+x)/(tan((1/2)*x)+1)

"smart int percentage size relative to default ", "150.00"

"###################################
integral", Int(1/((1+x)^(2/3)-(1+x)^(1/2)), x)

"maple default result ", 6*(1+x)^(1/6)+3*(1+x)^(1/3)+ln(x)+2*ln((1+x)^(1/6)-1)-ln((1+x)^(1/3)+(1+x)^(1/6)+1)-2*ln((1+x)^(1/6)+1)+ln((1+x)^(1/3)-(1+x)^(1/6)+1)-ln((1+x)^(1/2)+1)+ln((1+x)^(1/2)-1)+2*ln((1+x)^(1/3)-1)-ln((1+x)^(2/3)+(1+x)^(1/3)+1)

"smart int result ", 3*(1+x)^(1/3)+6*(1+x)^(1/6)+6*ln((1+x)^(1/6)-1)

"smart int percentage size relative to default ", "22.73"

"###################################
integral", Int(1/(x^3*(1+x)^(3/2)), x)

"maple default result ", (1/8)/((1+x)^(1/2)+1)^2+(7/8)/((1+x)^(1/2)+1)-(15/8)*ln((1+x)^(1/2)+1)-(1/8)/((1+x)^(1/2)-1)^2+(7/8)/((1+x)^(1/2)-1)+(15/8)*ln((1+x)^(1/2)-1)+2/(1+x)^(1/2)

"smart int result ", (1/4)*(15*x^2+5*x-2)/((1+x)^(1/2)*x^2)-(15/4)*arctanh((1+x)^(1/2))

"smart int percentage size relative to default ", "40.28"

"###################################
integral", Int(1/((1-x)^(7/2)*x^5), x)

"maple default result ", (1/64)/((1-x)^(1/2)+1)^4+(17/96)/((1-x)^(1/2)+1)^3+(159/128)/((1-x)^(1/2)+1)^2+(1083/128)/((1-x)^(1/2)+1)-(3003/128)*ln((1-x)^(1/2)+1)-(1/64)/((1-x)^(1/2)-1)^4+(17/96)/((1-x)^(1/2)-1)^3-(159/128)/((1-x)^(1/2)-1)^2+(1083/128)/((1-x)^(1/2)-1)+(3003/128)*ln((1-x)^(1/2)-1)+(2/5)/(1-x)^(5/2)+(10/3)/(1-x)^(3/2)+30/(1-x)^(1/2)

"smart int result ", (1/960)*(45045*x^6-105105*x^5+69069*x^4-6435*x^3-1430*x^2-520*x-240)/((x-1)^2*(1-x)^(1/2)*x^4)-(3003/64)*arctanh((1-x)^(1/2))

"smart int percentage size relative to default ", "37.18"

"###################################
integral", Int(x*((-a+x)/(b-x))^(1/2), x)

"maple default result ", (1/8)*(arctan((1/2)*(-b+2*x-a)/(-a*b+a*x+b*x-x^2)^(1/2))*a^2+2*b*arctan((1/2)*(-b+2*x-a)/(-a*b+a*x+b*x-x^2)^(1/2))*a-3*arctan((1/2)*(-b+2*x-a)/(-a*b+a*x+b*x-x^2)^(1/2))*b^2+4*(-a*b+a*x+b*x-x^2)^(1/2)*x-2*(-a*b+a*x+b*x-x^2)^(1/2)*a+6*(-a*b+a*x+b*x-x^2)^(1/2)*b)*(-(-a+x)/(-b+x))^(1/2)*(-b+x)/(-(-a+x)*(-b+x))^(1/2)

"smart int result ", (1/4)*(a-3*b-2*x)*(b-x)*(-(a-x)/(b-x))^(1/2)*(-(a-x)*(b-x))^(1/2)/(-(-a+x)*(-b+x))^(1/2)+((1/4)*b*a+(1/8)*a^2-(3/8)*b^2)*arctan((x-(1/2)*a-(1/2)*b)/(-x^2+(a+b)*x-b*a)^(1/2))*(-(a-x)/(b-x))^(1/2)*(-(a-x)*(b-x))^(1/2)/(a-x)

"smart int percentage size relative to default ", "67.63"

"###################################
integral", Int(x/((-x^2+5)*(-x^2+3)^(1/2)), x)

"maple default result ", -(1/4)*2^(1/2)*arctan((1/4)*(-4-2*5^(1/2)*(x-5^(1/2)))*2^(1/2)/(-(x-5^(1/2))^2-2*5^(1/2)*(x-5^(1/2))-2)^(1/2))-(1/4)*2^(1/2)*arctan((1/4)*(-4+2*5^(1/2)*(x+5^(1/2)))*2^(1/2)/(-(x+5^(1/2))^2+2*5^(1/2)*(x+5^(1/2))-2)^(1/2))

"smart int result ", -(1/2)*2^(1/2)*arctan((1/2)*(-x^2+3)^(1/2)*2^(1/2))

"smart int percentage size relative to default ", "20.20"

"###################################
integral", Int(exp(arcsin(x))*x^3/(-x^2+1)^(1/2), x)

"maple default result ", int(exp(arcsin(x))*x^3/(-x^2+1)^(1/2), x)

"smart int result ", Int(exp(arcsin(x))*x^3/(-x^2+1)^(1/2), x)

"smart int percentage size relative to default ", "100.00"

"###################################
integral", Int(x*arctan(x)^2*ln(x^2+1), x)

"maple default result ", (2*I)*ln(2)*arctan(x)-ln((1+I*x)^2/(x^2+1)+1)*arctan(x)^2*x^2+(1/2)*csgn(I*(1+I*x)^2/(x^2+1))^3*Pi*arctan(x)+(1/2)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^3*Pi*arctan(x)-I*csgn(I*(1+I*x)/(x^2+1)^(1/2))*csgn(I*(1+I*x)^2/(x^2+1))^2*Pi*arctan(x)*x-((1/2)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1))^2*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)*x-((1/4)*I)*csgn(I*(1+I*x)/(x^2+1)^(1/2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)^2*x^2-((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)^2+((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)^2*x^2+((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)^2*x^2+((1/4)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1))^2*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)^2*x^2-((1/2)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1))*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^2*Pi*arctan(x)^2*x^2-((1/2)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)*x+((1/2)*I)*csgn(I*(1+I*x)/(x^2+1)^(1/2))*csgn(I*(1+I*x)^2/(x^2+1))^2*Pi*arctan(x)^2*x^2+((1/2)*I)*csgn(I*(1+I*x)/(x^2+1)^(1/2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)*x+((1/2)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))*csgn(I*(1+I*x)^2/(x^2+1))*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*Pi*ln((1+I*x)^2/(x^2+1)+1)+I*csgn(I*((1+I*x)^2/(x^2+1)+1))*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^2*Pi*arctan(x)*x-((1/2)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)*x-2*ln(2)*arctan(x)*x+ln(2)*arctan(x)^2*x^2-(1/2)*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^3*Pi*arctan(x)+2*ln((1+I*x)^2/(x^2+1)+1)*arctan(x)*x+((1/2)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)*x-((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)^2*x^2+ln((1+I*x)^2/(x^2+1)+1)^2+3*ln((1+I*x)^2/(x^2+1)+1)+3*arctan(x)*x-(1/2)*arctan(x)^2*x^2-(-(2*I)*arctan(x)-arctan(x)^2+2*arctan(x)*x-arctan(x)^2*x^2+2*ln((1+I*x)^2/(x^2+1)+1))*ln((1+I*x)/(x^2+1)^(1/2))-2*ln((1+I*x)^2/(x^2+1)+1)*ln(2)+ln(2)*arctan(x)^2-(3*I)*arctan(x)-arctan(x)^2*ln((1+I*x)^2/(x^2+1)+1)+((1/2)*I)*csgn(I*(1+I*x)^2/(x^2+1))^3*Pi*ln((1+I*x)^2/(x^2+1)+1)-((1/2)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^3*Pi*ln((1+I*x)^2/(x^2+1)+1)+((1/4)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^3*Pi*arctan(x)^2-((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^3*Pi*arctan(x)^2-((1/4)*I)*csgn(I*(1+I*x)^2/(x^2+1))^3*Pi*arctan(x)^2+((1/2)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^3*Pi*ln((1+I*x)^2/(x^2+1)+1)-(1/2)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)-(1/2)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)+(1/2)*csgn(I*(1+I*x)/(x^2+1)^(1/2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)-csgn(I*(1+I*x)/(x^2+1)^(1/2))*csgn(I*(1+I*x)^2/(x^2+1))^2*Pi*arctan(x)-(1/2)*csgn(I*((1+I*x)^2/(x^2+1)+1))^2*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)+csgn(I*((1+I*x)^2/(x^2+1)+1))*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^2*Pi*arctan(x)-((1/2)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1))*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^2*Pi*arctan(x)^2+((1/2)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^3*Pi*arctan(x)*x+((1/2)*I)*csgn(I*(1+I*x)^2/(x^2+1))^3*Pi*arctan(x)*x-((1/4)*I)*csgn(I*(1+I*x)/(x^2+1)^(1/2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)^2+((1/4)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^3*Pi*arctan(x)^2*x^2+((1/4)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1))^2*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)^2-((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^3*Pi*arctan(x)^2*x^2-((1/4)*I)*csgn(I*(1+I*x)^2/(x^2+1))^3*Pi*arctan(x)^2*x^2-((1/2)*I)*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^3*Pi*arctan(x)*x+((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*Pi*arctan(x)^2+((1/4)*I)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)^2+((1/2)*I)*csgn(I*(1+I*x)/(x^2+1)^(1/2))*csgn(I*(1+I*x)^2/(x^2+1))^2*Pi*arctan(x)^2+((1/2)*I)*ln((1+I*x)^2/(x^2+1)+1)*Pi*csgn(I*(1+I*x)/(x^2+1)^(1/2))^2*csgn(I*(1+I*x)^2/(x^2+1))-((1/2)*I)*ln((1+I*x)^2/(x^2+1)+1)*Pi*csgn(I*((1+I*x)^2/(x^2+1)+1))^2*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)-((1/2)*I)*ln((1+I*x)^2/(x^2+1)+1)*Pi*csgn(I*(1+I*x)^2/(x^2+1))*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2-((1/2)*I)*ln((1+I*x)^2/(x^2+1)+1)*Pi*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))^2-I*csgn(I*(1+I*x)/(x^2+1)^(1/2))*csgn(I*(1+I*x)^2/(x^2+1))^2*ln((1+I*x)^2/(x^2+1)+1)*Pi+(1/2)*csgn(I*(1+I*x)^2/((x^2+1)*((1+I*x)^2/(x^2+1)+1)^2))*csgn(I/((1+I*x)^2/(x^2+1)+1)^2)*csgn(I*(1+I*x)^2/(x^2+1))*Pi*arctan(x)+I*ln((1+I*x)^2/(x^2+1)+1)*Pi*csgn(I*((1+I*x)^2/(x^2+1)+1))*csgn(I*((1+I*x)^2/(x^2+1)+1)^2)^2-(1/2)*arctan(x)^2

"smart int result ", (1/2)*ln(x^2+1)*arctan(x)^2*x^2-(1/2)*arctan(x)^2*x^2-ln(x^2+1)*arctan(x)*x+(1/2)*ln(x^2+1)*arctan(x)^2+3*arctan(x)*x-(3/2)*arctan(x)^2+(1/4)*ln(x^2+1)^2-(3/2)*ln(x^2+1)

"smart int percentage size relative to default ", "2.45"

"###################################
integral", Int((x^2+1)/((-x^2+1)*(x^4+1)^(1/2)), x)

"maple default result ", (1/4)*(arctanh((x^2-x+1)*2^(1/2)/(x^4+1)^(1/2))-arctanh((x^2+x+1)*2^(1/2)/(x^4+1)^(1/2)))*2^(1/2)

"smart int result ", (1/2)*arctanh((1/2)*(x^4+1)^(1/2)*2^(1/2)/x)*2^(1/2)

"smart int percentage size relative to default ", "45.65"

"###################################
integral", Int((a+b*f*x+b*sin(f*x+e))/(a+a*cos(f*x+e)), x)

"maple default result ", tan((1/2)*f*x+(1/2)*e)/f+b*x*tan((1/2)*f*x+(1/2)*e)/a-b*ln(1+tan((1/2)*f*x+(1/2)*e)^2)/(a*f)-b*ln(cos(f*x+e)+1)/(a*f)

"smart int result ", tan((1/2)*f*x+(1/2)*e)*(b*f*x+a)/(a*f)

"smart int percentage size relative to default ", "31.43"

"###################################
integral", Int(x*ln(1/x+1), x)

"maple default result ", (1/2)*ln(1/x)+(1/2)*x-(1/2)*ln(1/x+1)*(1/x+1)*(1/x-1)*x^2

"smart int result ", (1/2)*x^2*ln(1/x+1)+(1/2)*x-(1/2)*ln(1+x)

"smart int percentage size relative to default ", "67.74"

"###################################
integral", Int(1/(x*(x^5+1)), x)

"maple default result ", -(1/5)*ln(1+x)+ln(x)-(1/5)*ln(x^4-x^3+x^2-x+1)

"smart int result ", ln(x)-(1/5)*ln(x^5+1)

"smart int percentage size relative to default ", "39.29"

 


 

Download smart_int.mw

 

Any workaround or why ODESteps gives this internal Maple error?  Is this known limitation of ODESteps?

ps. reported also to Maplesoft just in case.

17128

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1750 and is the same as the version installed in this computer, created 2024, May 31, 10:47 hours Pacific Time.`

restart;

20456

ode:=diff(y(x), x) - 2*y(x) = 2*sqrt(y(x));
DEtools:-odeadvisor(ode);
 

diff(y(x), x)-2*y(x) = 2*y(x)^(1/2)

[_quadrature]

ic:=y(0) = 1;
Student:-ODEs:-ODESteps([ode,ic]);

y(0) = 1

Error, (in ln) numeric exception: division by zero

restart;

20456

ode:=diff(y(x), x) - 2*y(x) = 2*sqrt(y(x));
ic:=y(0) = 1;
dsolve([ode,ic]);

diff(y(x), x)-2*y(x) = 2*y(x)^(1/2)

y(0) = 1

y(x) = 4*exp(2*x)-4*exp(x)+1

 

 

Download bug_in_odesteps_divide_by_zero_may_31_2024.mw

I put together the attached worksheet to help me determine the cheapest way to buy "refreshments" for a party by comparing price and volume of different bottle size options.  The spreadsheet works fine as is.  However, when I right click on the output of line (14) and format pct_difference as percent with 2 decimal places and execute the worksheet, Maple hangs on that line and progresses no further.  This doesn't happen in Maple 2018 but the problem does show up in Maple 2024.  Suggestions please?

cost_comparison_-_liquid_(v01MP).mw

This question is as much an observation of somthing I accidently stumbled across. I was using eval[recurse] to evaluate expressions reduced with LargeExpressions. I found eval['recurse'](eval['recurse']([Expr1 , Expr2] , [Q=.. Q1=.....])[]) to be better than simplify(eval['recurse']([Expr1 , Expr2] , [Q=.. Q1=.....])[]).

I only realised what was happening  when I put the below together. Then I could see the wood from the trees. 

It would be interesting to know why.

restart

 

Pt:=[[(sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(Q[6])*(t^2 + 1)/(sqrt(sqrt(Q[2])/(4*a*c - b^2)^2)*sqrt((2*sqrt(Q[2])*a*c^2*e^2 + 2*sqrt(Q[2])*b^2*c^2*f - 8*sqrt(Q[2])*a^3*c*f + 2*sqrt(Q[2])*a^2*b^2*f + 16*sqrt(Q[2])*a^2*c^2*f + 2*sqrt(Q[2])*a^2*c*d^2 - 4*sqrt(Q[2])*a^2*c*e^2 - 8*sqrt(Q[2])*a*c^3*f - 4*sqrt(Q[2])*a*c^2*d^2 + 2*sqrt(Q[2])*a^3*e^2 + 2*sqrt(Q[2])*c^3*d^2 - 2*sqrt(Q[2])*b*c^2*d*e + 4*sqrt(Q[2])*a*b*c*d*e - 2*sqrt(Q[2])*a^2*b*d*e - 4*sqrt(Q[2])*a*b^2*c*f + sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] - 2*Q[11])*signum((sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] - 8*((a - c)^2*sqrt(Q[2])/4 + Q[5]/4)*Q[8])*Q[4])*Q[4])*(t^2 - 1)) + 2*sqrt(2*sqrt(Q[2]) - 2*Q[10])*t*sqrt(Q[6])*Q[9]/(sqrt(sqrt(Q[2])/(4*a*c - b^2)^2)*sqrt((2*sqrt(Q[2])*a*c^2*e^2 + 2*sqrt(Q[2])*b^2*c^2*f - 8*sqrt(Q[2])*a^3*c*f + 2*sqrt(Q[2])*a^2*b^2*f + 16*sqrt(Q[2])*a^2*c^2*f + 2*sqrt(Q[2])*a^2*c*d^2 - 4*sqrt(Q[2])*a^2*c*e^2 - 8*sqrt(Q[2])*a*c^3*f - 4*sqrt(Q[2])*a*c^2*d^2 + 2*sqrt(Q[2])*a^3*e^2 + 2*sqrt(Q[2])*c^3*d^2 - 2*sqrt(Q[2])*b*c^2*d*e + 4*sqrt(Q[2])*a*b*c*d*e - 2*sqrt(Q[2])*a^2*b*d*e - 4*sqrt(Q[2])*a*b^2*c*f + sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] + 2*Q[11])*signum((sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] + 8*(-(a - c)^2*sqrt(Q[2])/4 + Q[5]/4)*Q[8])*Q[4])*Q[4])*(t^2 - 1)) + b*e - 2*c*d)/(4*a*c - b^2),

 (-sqrt(2*sqrt(Q[2]) - 2*Q[10])*sqrt(Q[6])*(t^2 + 1)*Q[9]/(sqrt(sqrt(Q[2])/(4*a*c - b^2)^2)*sqrt((2*sqrt(Q[2])*a*c^2*e^2 + 2*sqrt(Q[2])*b^2*c^2*f - 8*sqrt(Q[2])*a^3*c*f + 2*sqrt(Q[2])*a^2*b^2*f + 16*sqrt(Q[2])*a^2*c^2*f + 2*sqrt(Q[2])*a^2*c*d^2 - 4*sqrt(Q[2])*a^2*c*e^2 - 8*sqrt(Q[2])*a*c^3*f - 4*sqrt(Q[2])*a*c^2*d^2 + 2*sqrt(Q[2])*a^3*e^2 + 2*sqrt(Q[2])*c^3*d^2 - 2*sqrt(Q[2])*b*c^2*d*e + 4*sqrt(Q[2])*a*b*c*d*e - 2*sqrt(Q[2])*a^2*b*d*e - 4*sqrt(Q[2])*a*b^2*c*f + sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] - 2*Q[11])*signum((sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] - 8*((a - c)^2*sqrt(Q[2])/4 + Q[5]/4)*Q[8])*Q[4])*Q[4])*(t^2 - 1)) + 2*sqrt(2*sqrt(Q[2]) + 2*Q[10])*t*sqrt(Q[6])/(sqrt(sqrt(Q[2])/(4*a*c - b^2)^2)*sqrt((2*sqrt(Q[2])*a*c^2*e^2 + 2*sqrt(Q[2])*b^2*c^2*f - 8*sqrt(Q[2])*a^3*c*f + 2*sqrt(Q[2])*a^2*b^2*f + 16*sqrt(Q[2])*a^2*c^2*f + 2*sqrt(Q[2])*a^2*c*d^2 - 4*sqrt(Q[2])*a^2*c*e^2 - 8*sqrt(Q[2])*a*c^3*f - 4*sqrt(Q[2])*a*c^2*d^2 + 2*sqrt(Q[2])*a^3*e^2 + 2*sqrt(Q[2])*c^3*d^2 - 2*sqrt(Q[2])*b*c^2*d*e + 4*sqrt(Q[2])*a*b*c*d*e - 2*sqrt(Q[2])*a^2*b*d*e - 4*sqrt(Q[2])*a*b^2*c*f + sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] + 2*Q[11])*signum((sqrt(Q[2])*sqrt(2*sqrt(Q[2]) + 2*Q[10])*sqrt(2*sqrt(Q[2]) - 2*Q[10])*Q[7] + 8*(-(a - c)^2*sqrt(Q[2])/4 + Q[5]/4)*Q[8])*Q[4])*Q[4])*(t^2 - 1)) - 2*a*e + b*d)/(4*a*c - b^2)],

[Q[2] = (a^2 - 2*a*c + b^2 + c^2)*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)^2, Q[4] = 1/((a^2 - 2*a*c + b^2 + c^2)*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)^2), Q[5] = (a^2 - 2*a*c + b^2 + c^2)*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)*(a + c), Q[6] = signum((4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)/(4*a*c - b^2))*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)/(4*a*c - b^2), Q[7] = csgn((4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)*(b*I + a - c)*I)*b, Q[8] = 4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2, Q[9] = csgn((4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)*(b*I + a - c)*I), Q[10] = (a - c)*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2), Q[11] = (a + c)*(a^2 - 2*a*c + b^2 + c^2)*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)^2]]:

length(Pt);  # was >27,000

5002

(1)

valsh:=[a = -9, b = -9, c = 16, d = -10, e = 7, f = -36]

[a = -9, b = -9, c = 16, d = -10, e = 7, f = -36]

(2)

S1:=eval['recurse'](Pt,valsh)[];

length(%)

 

[-(1/657)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*Q[6]^(1/2)*(t^2+1)*431649^(1/2)/(Q[2]^(1/4)*((-28903750*Q[2]^(1/2)+Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]-2*Q[11])*signum((Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]-8*((625/4)*Q[2]^(1/2)+(1/4)*Q[5])*Q[8])*Q[4])*Q[4])^(1/2)*(t^2-1))-(2/657)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*t*Q[6]^(1/2)*Q[9]*431649^(1/2)/(Q[2]^(1/4)*((-28903750*Q[2]^(1/2)+Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]+2*Q[11])*signum((Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]+8*(-(625/4)*Q[2]^(1/2)+(1/4)*Q[5])*Q[8])*Q[4])*Q[4])^(1/2)*(t^2-1))-257/657, (1/657)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[6]^(1/2)*(t^2+1)*Q[9]*431649^(1/2)/(Q[2]^(1/4)*((-28903750*Q[2]^(1/2)+Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]-2*Q[11])*signum((Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]-8*((625/4)*Q[2]^(1/2)+(1/4)*Q[5])*Q[8])*Q[4])*Q[4])^(1/2)*(t^2-1))-(2/657)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*t*Q[6]^(1/2)*431649^(1/2)/(Q[2]^(1/4)*((-28903750*Q[2]^(1/2)+Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]+2*Q[11])*signum((Q[2]^(1/2)*(2*Q[2]^(1/2)+2*Q[10])^(1/2)*(2*Q[2]^(1/2)-2*Q[10])^(1/2)*Q[7]+8*(-(625/4)*Q[2]^(1/2)+(1/4)*Q[5])*Q[8])*Q[4])*Q[4])^(1/2)*(t^2-1))-24/73], [Q[2] = 377479229074, Q[4] = 1/377479229074, Q[5] = 114273866, Q[6] = 23123/657, Q[7] = -9, Q[8] = 23123, Q[9] = 1, Q[10] = -578075, Q[11] = 2642354603518]

 

2074

(3)

simplify(S1);# this is  simplify with side retations
length(%)

[-(257/248003853501618)*377479229074^(3/4)*((377479229074^(1/4)*(t^2-1)*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)+(1/168849)*657^(1/2)*23123^(1/2)*431649^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(t^2+1))*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)-14)^(1/2)+(2/168849)*23123^(1/2)*657^(1/2)*431649^(1/2)*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)*t)/(((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)-14)^(1/2)*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)*(t-1)*(t+1)), -(12/13777991861201)*377479229074^(3/4)*((377479229074^(1/4)*(t^2-1)*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)-(1/141912)*657^(1/2)*23123^(1/2)*431649^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)*(t^2+1))*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)-14)^(1/2)+(1/70956)*(2*377479229074^(1/2)-1156150)^(1/2)*t*23123^(1/2)*657^(1/2)*431649^(1/2)*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2))/(((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)-14)^(1/2)*((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)*(t-1)*(t+1))]

 

2316

(4)

simplify(%%);
length(%)

[-(1/71716466988)*(-2471*706^(1/2)+249218)^(1/2)*(2471*706^(1/2)+249218)^(1/2)*((73^(1/2)*(t^2+1)*(46246*706^(1/2)-1156150)^(1/2)+(257/3)*706^(1/4)*(14+2*706^(1/2))^(1/2)*t^2)*(-14+2*706^(1/2))^(1/2)+2*73^(1/2)*(t*(46246*706^(1/2)+1156150)^(1/2)*(14+2*706^(1/2))^(1/2)-257*706^(1/4)))*706^(1/4)/(t^2-1), (1/71716466988)*(-2471*706^(1/2)+249218)^(1/2)*((73^(1/2)*(t^2+1)*(46246*706^(1/2)+1156150)^(1/2)-72*706^(1/4)*(14+2*706^(1/2))^(1/2)*t^2)*(-14+2*706^(1/2))^(1/2)-2*73^(1/2)*((14+2*706^(1/2))^(1/2)*(46246*706^(1/2)-1156150)^(1/2)*t-216*706^(1/4)))*(2471*706^(1/2)+249218)^(1/2)*706^(1/4)/(t^2-1)]

 

744

(5)

 

S2:=eval['recurse'](eval['recurse'](Pt,valsh)[]);# I find this interesting
length(%)

[-(1/162938531750563026)*(2*377479229074^(1/2)-1156150)^(1/2)*23123^(1/2)*657^(1/2)*(t^2+1)*431649^(1/2)*377479229074^(3/4)/(((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)*(t^2-1))-(1/81469265875281513)*(2*377479229074^(1/2)+1156150)^(1/2)*t*23123^(1/2)*657^(1/2)*431649^(1/2)*377479229074^(3/4)/(((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)-14)^(1/2)*(t^2-1))-257/657, (1/162938531750563026)*(2*377479229074^(1/2)+1156150)^(1/2)*23123^(1/2)*657^(1/2)*(t^2+1)*431649^(1/2)*377479229074^(3/4)/(((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)+14)^(1/2)*(t^2-1))-(1/81469265875281513)*(2*377479229074^(1/2)-1156150)^(1/2)*t*23123^(1/2)*657^(1/2)*431649^(1/2)*377479229074^(3/4)/(((9/377479229074)*377479229074^(1/2)*(2*377479229074^(1/2)-1156150)^(1/2)*(2*377479229074^(1/2)+1156150)^(1/2)+(625/8162419)*377479229074^(1/2)-14)^(1/2)*(t^2-1))-24/73]

 

1283

(6)

simplify(S2); #
length(%)

 

[-(1/406325592)*(14+2*706^(1/2))^(1/2)*(((181442/3)*(14+2*706^(1/2))^(1/2)*t^2+706^(3/4)*73^(1/2)*(46246*706^(1/2)-1156150)^(1/2)*(t^2+1))*(-14+2*706^(1/2))^(1/2)+2*(46246*706^(1/2)+1156150)^(1/2)*73^(1/2)*706^(3/4)*(14+2*706^(1/2))^(1/2)*t-362884*73^(1/2))*(-14+2*706^(1/2))^(1/2)/(t^2-1), (14+2*706^(1/2))^(1/2)*((-2*706^(3/4)*73^(1/2)*(46246*706^(1/2)-1156150)^(1/2)*t-50832*(-14+2*706^(1/2))^(1/2)*t^2)*(14+2*706^(1/2))^(1/2)+(304992+(t^2+1)*(46246*706^(1/2)+1156150)^(1/2)*706^(3/4)*(-14+2*706^(1/2))^(1/2))*73^(1/2))*(-14+2*706^(1/2))^(1/2)/(406325592*t^2-406325592)]

 

705

(7)
 

 

Download 2024-05-31_Eval_Recurse_vs_Simplify_Side_Rels.mw

counts_and_bins_data_output_from_histogram().mw

The Historgram( ) function is the combination of a binning computation and a visualization of the result of the binning computation. In order to generate any histogram you need to know the set of bin boundaries and the number of counts in each bin.

 

These bin boundaries look like: bin_bounds := [[`x__1,min`, `x__1,max`], [`x__2,min`, `x__2,max`], () .. (), [`x__N,min`, `x__N,max`]]where there are N bins in total.

The counts data looks like: counts := [H__1, H__2, () .. (), H__N]where there are N bins in total.

 

The Histogram( ) command passed this data around internally. Can I have Histogram( ) output this data? In other words, can I get the x-y data from the histogram, the bins-counts data?


Download counts_and_bins_data_output_from_histogram().mw

Can_I_change_the_location_of_the_color_bar_caption_in_Maple_2024.mw

In Maple 2024,

can I change the location of the color bar caption in Maple 2024? It conflicts with the color bar labels sometimes. See the attached maple sheet for an example.

I have some long expressions that would be more readable if common sections were substituted out. There are many sets of radicals often stacked inside each other.  The other one is (a*x..........) I see repeated in some other expressions. indets is good, but is there a way to use it to select  (a*x..........) types
At these eexpressions are returned from procdures would probably put them in an array/table with their substitution components. 
I dont need to substitute everything. What I have done below is reasonable for reading and seeing the structure.

What would be a good approact here?

restart

 

18*x^2+21*x*y+7*y^2-29*x-37*y-56

(1)

vals:=[a=18,b=21,c=7,d=-29,e=-37,f=-56]

[a = 18, b = 21, c = 7, d = -29, e = -37, f = -56]

(2)

vars[1]:=x:vars[2]:=y:

eqn:= 8*(2*((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^(1
                /2)+(-8*a*f+2*d^2)*c^2+(8*a^2*f-2*a*d^2+2*a*e^2+2*b^2*f-2*b*d*e)*c-2*a^2*e^2-2*
                a*b^2*f+2*a*b*d*e)^(1/2)*(a*c-1/4*b^2)/(4*a*c-b^2)^2*(vars[1]-(1/4*b*e-1/2*c*d)/(a*c-\
                1/4*b^2))-8*csgn((4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)*(Complex(1)*a+Complex(-1)*c-
                b))*(a*c-1/4*b^2)*(2*((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^
                (1/2)+(8*a*f-2*d^2)*c^2+(-8*a^2*f+2*a*d^2-2*a*e^2-2*b^2*f+2*b*d*e)*c+2*a^2*e^2+
                2*a*b^2*f-2*a*b*d*e)^(1/2)/(4*a*c-b^2)^2*(vars[2]-(-1/2*a*e+1/4*b*d)/(a*c-1/4*b^2))

8*(2*((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^(1/2)+(-8*a*f+2*d^2)*c^2+(8*a^2*f-2*a*d^2+2*a*e^2+2*b^2*f-2*b*d*e)*c-2*a^2*e^2-2*a*b^2*f+2*a*b*d*e)^(1/2)*(a*c-(1/4)*b^2)*(x-((1/4)*b*e-(1/2)*c*d)/(a*c-(1/4)*b^2))/(4*a*c-b^2)^2-8*csgn((4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)*(I*a-I*c-b))*(a*c-(1/4)*b^2)*(2*((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^(1/2)+(8*a*f-2*d^2)*c^2+(-8*a^2*f+2*a*d^2-2*a*e^2-2*b^2*f+2*b*d*e)*c+2*a^2*e^2+2*a*b^2*f-2*a*b*d*e)^(1/2)*(y-(-(1/2)*a*e+(1/4)*b*d)/(a*c-(1/4)*b^2))/(4*a*c-b^2)^2

(3)

length(eqn)

962

(4)

simplify(eval(eqn,vals))

(4/567)*(9*x+53)*(-63382+5762*562^(1/2))^(1/2)+(4/1323)*(-21*y+241)*(63382+5762*562^(1/2))^(1/2)

(5)

indets(eqn)

{a, b, c, d, e, f, x, y, ((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^(1/2), (2*((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^(1/2)+(-8*a*f+2*d^2)*c^2+(8*a^2*f-2*a*d^2+2*a*e^2+2*b^2*f-2*b*d*e)*c-2*a^2*e^2-2*a*b^2*f+2*a*b*d*e)^(1/2), (2*((a^2-2*a*c+b^2+c^2)*(4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)^2)^(1/2)+(8*a*f-2*d^2)*c^2+(-8*a^2*f+2*a*d^2-2*a*e^2-2*b^2*f+2*b*d*e)*c+2*a^2*e^2+2*a*b^2*f-2*a*b*d*e)^(1/2), csgn((4*a*c*f-a*e^2-b^2*f+b*d*e-c*d^2)*(I*a-I*c-b))}

(6)

Subs:=[((a^2 - 2*a*c + b^2 + c^2)*(4*a*c*f - a*e^2 - b^2*f + b*d*e - c*d^2)^2)=A^2,
         (-8*a*f + 2*d^2)*c^2 + (8*a^2*f - 2*a*d^2 + 2*a*e^2 + 2*b^2*f - 2*b*d*e)*c - 2*a^2*e^2 - 2*a*b^2*f + 2*a*b*d*e=B^2,
           f*b^3 - b^2*d*e - (-(-4*c*f + e^2)*a - c*d^2)*b=C]:

eqn1:=simplify(eqn,Subs)

(-8*csgn(C+((1/2)*I)*B^2)*(-(1/4)*y*b^2-(1/4)*b*d+a*(y*c+(1/2)*e))*(-B^2+2*(A^2)^(1/2))^(1/2)+8*(B^2+2*(A^2)^(1/2))^(1/2)*(-(1/4)*b^2*x-(1/4)*b*e+c*(a*x+(1/2)*d)))/(4*a*c-b^2)^2

(7)

Subsnumeric:=eval(Subs,vals)

[74635047712 = A^2, -253528 = B^2, 242004 = C]

(8)

simplify(eval(eqn1,[(rhs=lhs)~(Subsnumeric)[],vals[] ]))

(4/567)*(9*x+53)*(-63382+5762*562^(1/2))^(1/2)+(4/1323)*(241-21*y)*(63382+5762*562^(1/2))^(1/2)

(9)
 

 

Download 2024-05-27_Q_Pick_Apart_an_Expression.mw

How do I calculate and plot an Orthogonal Trajectory on Maple 2024?

Here's the equation of the contour lines:

x*y^2 - x^2 - y^2 = k

I need to make it pass through a precise point on my contour lines graph, and everything I do doesn't seem to work.

Given the ode   y''(x)*y'(x)=0, clearly it has solutions for y''=0 and y'=0.

These are y=c1+x*c2 and y=c1. But Maple gives 3 solutions

12592

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

ode:=diff(y(x),x$2)*diff(y(x),x)=0;

(diff(diff(y(x), x), x))*(diff(y(x), x)) = 0

dsolve(ode)

y(x) = c__1, y(x) = -c__1*x+c__2, y(x) = c__1*x+c__2

dsolve(diff(y(x),x$2)=0)

y(x) = c__1*x+c__2

dsolve(diff(y(x),x)=0)

y(x) = c__1

 

 

Download why_3_solutions_may_24_2024.mw

Where did the third solution come from? The 3 solutions are correct ofcourse, but why 3? There should only be two. 

FYI, I am using 

Physics:-Version()

The "Physics Updates" version in the MapleCloud is 1746. The 

   version installed in this computer is 1745 created 2024, May 

I have to check earlier Maple versions to see if same thing happens there.

I am stuck this command works seemlessly in Maple:

ThermophysicalData:-CoolProp:-Property(D, T = 20*Unit('degC'), P = 760*Unit('mmHg'), water)

but it does not work in Maple Flow. Does anyone knows why? Thank you so much for your help in the matter.

Hello :) 

I have a math problem, where I first need to use Linear regression to find the equation based on a set of data. I did that, no problem. 

However, in the next part of the problem I need to check if the residuals are under "normal distribution". Usually, I check if a dataset is normally distributed via "QQ-plot", and there will be no problems. But this time, because I need to check the residuals, I need to use the "residualQQplot(data,LinReg)" command to make it happen. But when I read the mean-value, mu, it says "-0," and nothing else? I know it should be "-3,2752*10^-15. 

The standard deviation is correct.

How do I fix this, so the residualQQplot shows me the right result? 

I have attached the worksheet here. worksheet_-_linear_reg_and_residuals_for_normal_distribution.mw

Thank you! 

I can't understand this behavior. Any idea why it happens?

Solve is able to solve equation   f(y)=x+A for y, but can't solve   f(y)=x for y.

This is unexpected for me. I do not see why it can solve it when RHS is x+A but not when RHS is just x.


 

21040

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1745. The version installed in this computer is 1744 created 2024, April 17, 19:33 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

21040

sol:=int(1/sqrt(sin(y)),y);
solve(sol=x,y)

(sin(y)+1)^(1/2)*(-2*sin(y)+2)^(1/2)*(-sin(y))^(1/2)*EllipticF((sin(y)+1)^(1/2), (1/2)*2^(1/2))/(cos(y)*sin(y)^(1/2))

Warning, solutions may have been lost

sol:=int(1/sqrt(sin(y)),y);
solve(sol=x+b,y):
{%}; #to eliminate duplicates

(sin(y)+1)^(1/2)*(-2*sin(y)+2)^(1/2)*(-sin(y))^(1/2)*EllipticF((sin(y)+1)^(1/2), (1/2)*2^(1/2))/(cos(y)*sin(y)^(1/2))

{arctan(JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2-1, -(1/2)*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))*(4-2*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2)^(1/2)*2^(1/2)), arctan(JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2-1, (1/2)*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))*(4-2*JacobiSN(((1/2)*I)*2^(1/2)*(x+b), (1/2)*2^(1/2))^2)^(1/2)*2^(1/2))}

 


I can trick it to solve  f(y)=x for y  by asking it to solve f(y)=x+A for y and then set A=0 in the solution. But one should not have to do this. Is this a bug or Am I missing something?

Download why_solve_when_adding_term_only_may_22_2024.mw

Hello.

I am very new to Maple. Many this are great, but I do not understand how maple deals with, especially, radiological units. In particular regarding joules [J] wich Maple seems to have alt least three types:

1) J - in relation to work

2) J(radiation) in relation to Gy (Gray) J/kg

3) J(dose_equivalent_index) in relation to Sv also J/kg

Why does Maple distinguish between these "joules"? As a phycisist they are all (well maby not entirely for Sv) equal to me. How can I make Maple treat them all at the "same joule"?

I have tried the following first:

with(Units[Standard]) and

with(Units[Natural])

Best,

Carsten

If I understand correctly, both of 

int(RETURN(is(y::positive)), y = 0 .. x) assuming 0 <= x, x < 1;
int(RETURN(coulditbe(y = 1)), y = 0 .. x) assuming 0 < x, x < 1;

should output `not`(true). However, Maple simply returns true for the second one. 
Isn't this result incorrect? Or am I missing something?

I would like to remove isomorphs from some graphs. That is to filter out non-isomorphic graphs.

graph_list := [GraphTheory:-CompleteGraph(3), GraphTheory:-PathGraph(3),Graph({{a,b},{b,c},{c,a}})]:

# Create a table to store non-isomorphic graphs
non_isomorphic_graphs := table():

# Counter for indexing the table
counter := 1:

# Iterate over each graph and check if it is isomorphic to any of the stored graphs
for g in graph_list do
    is_isomorphic := false:
    for key in indices(non_isomorphic_graphs,'nolist') do
        if GraphTheory:-IsIsomorphic(g, non_isomorphic_graphs[key]) then
            is_isomorphic := true:
            break:
        end if:
    end do:
    if not is_isomorphic then
        non_isomorphic_graphs[counter] := g:
        counter := counter + 1:
    end if:
end do:
op(non_isomorphic_graphs)
DrawGraph~(non_isomorphic_graphs,  layoutoptions = [neutral_color = "pink", initial = spring])

 

A canonical form is a labeled graph Canon(G) that is isomorphic to G, such that every graph that is isomorphic to G has the same canonical form as G. I noticed that Maple has a function called CanonicalGraph. Can this function achieve the effect I want? I can easily achieve this by combining the  canonical form and property of sets  in  Sage.

graph_list = [Graph([(0, "a"), ("a", 2), (2, 0)]),graphs.PathGraph(3), graphs.CompleteGraph(3)]
non_isomorphic_graphs_labels = {g.canonical_label().copy(immutable=True) for g in graph_list}

 

 

An underlying motivation:My collaborators and I designed generation rules (algorithms) for 1-planar 4-trees;see https://arxiv.org/abs/2404.15663. Since the generating process is based on 1-planar embeddings, it will ultimately require filtering non-isomorphic graphs among a list of embeddings. I would be especially delighted to see that someone implement our algorithm in the future. Currently, I am stuck on handling some labeling details. It is somewhat similar to generating Apollonian networks (planar 3-trees). However, since its simplicial vertices are only two, the growth rate will not be too fast as the number of vertices increases.

First 37 38 39 40 41 42 43 Page 39 of 46