Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I would like to plot the following singular double integral, but I cannot due to singularities...

 

where x>0, t=0.2 and m=0.2.

I defined f(y) function as f:=y->exp(-(y-4.68)^2/0.4):

I attached my file:
1st_try.mw

Thank you !

There is an error in my implementation as follow:

"Error, (in unknown) incorrect syntax in parse: `*` unexpected (near 1st character of parsed string)"

What I have to do to remove this error?

Hello,

I've got this error in my code and I don't know why as I didn't get it when I used a different xn function. Any help would be greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

restart

with(plots):

boxcount := proc (data, N) local n, xmax, xmin, xrange, ymax, ymin, yrange, dx, dy, i, j, ix, iy, sum, res; n := (1/2)*ArrayNumElems(data); xmax := max(seq(data[i, 1], i = 1 .. n)); xmin := min(seq(data[i, 1], i = 1 .. n)); ymax := max(seq(data[i, 2], i = 1 .. n)); ymin := min(seq(data[i, 2], i = 1 .. n)); xrange := xmax-xmin; xmin := xmin+(-1)*0.1e-1*xrange; xmax := xmax+0.1e-1*xrange; xrange := 1.02*xrange; yrange := ymax-ymin; ymin := ymin+(-1)*0.1e-1*yrange; ymax := ymax+0.1e-1*yrange; yrange := 1.02*yrange; dx := xrange/N; dy := yrange/N; res := Array(0 .. N-1, 0 .. N-1, 0); for i to n do ix := trunc((data[i, 1]-xmin)/dx); iy := trunc((data[i, 2]-ymin)/dy); res[ix, iy] := 1 end do; add(add(res[i, j], i = 0 .. N-1), j = 0 .. N-1) end proc:

``

bicationplot := proc (N) local Nr, Nt, x0, rmin, rmax, bif, k, ir, r, xn, i; global pts; Nr := 100; Nt := 200; x0 := .1; rmin := .75; rmax := 3.5; bif := Array(1 .. Nr*N, 1 .. 2); k := 1; for ir to Nr do r := rmin+ir*(rmax-rmin)/Nr; xn := x0; for i to Nt do xn := xn^2-r end do; for i to N do xn := xn^2-r; bif[k, 1] := r; bif[k, 2] := xn; k := k+1 end do end do; pts := bif end proc:

bif

bif

(1)

fractaldimension := proc (Noofitterations::integer, Npoints::integer, Nmax::integer) local res, xv, yv, line, stderrors, avgstderrors, i, avgline; avgstderrors := 0; avgline := 0; for i to Noofitterations do bicationplot(Npoints); res := [seq([1.0/n, boxcount(pts, n)], n = 1 .. Nmax, 10)]; xv := [seq(log(res[i][1]), i = 1 .. nops(res))]; yv := [seq(log(res[i][2]), i = 1 .. nops(res))]; line[i] := Fit(m*x+const, xv, yv, x, output = [leastsquaresfunction]); stderrors[i] := Fit(m*x+const, xv, yv, x, output = standarderrors) end do; for i to Noofitterations do avgstderrors := avgstderrors+stderrors[i] end do; avgstderrors := avgstderrors/Noofitterations; for i to Noofitterations do avgline := avgline+line[i] end do; avgline := avgline/Noofitterations; return FD = -(diff(avgline, x)), avgline, avgstderrors, loglogplot(res) end proc:

fractaldimension(10, 100, 100)

Error, (in boxcount) bad index into Array

 

``

 

Download First_part_fractal_determination_.mw

Explore the values of km digit(n,m) using km list for all m, 0 ≤ m ≤ 8.
Look at the output until you can make a conjecture that concerns the pattern
obtained for each fixed m, 0 ≤ m ≤ 8 using 

km := proc (n::posint, m::nonnegint)

local k,

mySum := 0;

for k to n do

mySum := mySum+k^m

end do;

return mySum

end proc

using a list km list(m,6,20) when m is not a multiple of 4, and km list(m,6,50) when m is a multiple of 4.

 

any help appreciated..THank you

 

i have this problem -> f'^2 -ff''=f'''-k1(2f'f'''-ff''''-f''^2)+Ha^2(E1-f') with boundary conditions f(0)=0, f'(0)=1, f'(∞)=0.

since it is a fourth order equation, but only three bcs, it does not produce unique solution. so the solution of the equation may be seek in form of f=f0(eta)+k1f1(eta).

thus the equation will become 

f0'^2-f0f0''=f0'''+Ha^2(E1-f0')

and

f1'''-Ha^2f1'-2f0'f1'+f0f1''+f1f0''=2f0'f0'''-f0f0''''-f0''^2.

boundary conditions are 

f0(0)=0,f0'(0)=1,f0'(∞)=0

f1(0)=0,f1'(0)=0,f1'(∞)=0.

i had been clueless in solving this problem. please somebody help me with this problem.

Hi Please I need help with making the output of my fslolve appear in a way that I can easily copy to an excel.

I am doing analysis for 3 countries and each time I produce a result I copy manually to excel and use 'text to column' and the 'transpose' excel options to arrange the results in order. I do this for almost 20 time because I want to see how hows in parameter affect the variables. is there a way I can convert this to a 32 by 3 matrix so that I can copy all at the same time instead of copying each variable at a time. here is my solve command

UK_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_UK_FIRST), InitValue_UK_FIRST);
ES_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_ES_FIRST), InitValue_ES_FIRST);
DK_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_DK_FIRST), InitValue_DK_FIRST);

The Results

UK_SOL_FIRST:={A_ss = 14.36104896, C_ss = 1.445842138, I_ss = 0.3136706500,

K_ss = 12.54682600, K_v_ss = 125.4682600,

LT_ss = 0.01061009037, L_ss = 4.014721807, N_ss = 0.9307582996,

P_a_ss = 0.9336893751, P_ss = 0.8625403648,

Surp = 0.9890479879, U_b_ss = 0.1781599919,

U_ss = 0.1046105158, V_ss = 0.05052687912, W_max = 1.476989982,

W_min = 0.4879419937, W_ss = 1.826907218,

W_tilde = 3.478049987, Y_ss = 2.428417935, aa_ss = 21.67403493,

chhi = 0.4523413798, f_c_ss = 0.04880034560,

m_ss = 0.03536881539, p_d_ss = 0.9907986980,

x_T = 0.7023268636, y_d_ss = 10.57030302, y_f_ss = 1.174478111,

y_x_ss = 10.57030300, z_ss = 21.14060602,

Profit_ss = 4.094720376, phi_prod = 0.9753885739,

theta_ss = 0.4830000000}

ES_SOL_FIRST:={A_ss = 10.91702785, C_ss = 2.038687975, I_ss = 0.3058575000,

K_ss = 12.23430000, LT_ss = 0.1309315222, L_ss = 2.857497927,

N_ss = 0.8398656215, P_a_ss = 0.9680877046,

P_ss = 0.8638978804, Surp = 2.541617932, U_b_ss = 0.9095925505,

U_ss = 0.1819708847, V_ss = 0.03119500880, W_max = 3.252738093,

W_min = 0.7111201606, W_ss = 3.605202340,

W_tilde = 3.665280790, Y_ss = 2.367929032, aa_ss = 15.67939783,

betta = 0.9909865708, chhi = 0.2898275349,

f_c_ss = 0.6743530978, m_ss = 0.02183650616,

p_d_ss = 0.9939322922, x_T = 0.005556307841,

y_d_ss = 7.853422751, y_f_ss = 1.195945300,

y_x_ss = 7.978400682, z_ss = 15.83182343,

Profit_ss = 3.084421270, phi_prod = 1.009721394,

theta_ss = 0.1714285714}


DK_SOL_FIRST:={A_ss = 16.18893837, C_ss = 1.359886068, I_ss = 0.2487000000,

K_ss = 9.948000000, LT_ss = 0.02282780783, L_ss = 5.834365727,

N_ss = 0.9399351536, P_a_ss = 0.7054445707,

P_ss = 0.8796237740, Surp = 0.6511024854,

U_b_ss = 0.4572819488, U_ss = 0.08450316042,

V_ss = 0.03491187713, W_max = 1.293898615,

W_min = 0.6427961298, W_ss = 2.363825013,

W_tilde = 2.758200925, Y_ss = 1.755529412, aa_ss = 34.56310241,

betta = 0.9851712031, chhi = 0.4499333284,

f_c_ss = 0.1898151486, m_ss = 0.02443831399,

p_d_ss = 1.032636460, x_T = 0.1506134910, y_d_ss = 11.17773688,

y_f_ss = 0.9144278497, y_x_ss = 13.74561008,

z_ss = 24.92334696, Profit_ss = 4.926248216,

phi_prod = 0.7210969276, theta_ss = 0.4131428571}

 

I''m looking to complete the following, and then use the 2nd to find what n for which Fn is divisible by f(3),  not sure where to start..any help much appreciated..

 

proc(f::procedure,s::posint,r::posint,c::posint)
description
"Indicate divisibility of f(n) by s for n <= cr.",
"Write 'D' for divisible, else 'n'; r rows and c cols.";
local i, j, str, char;

for i from 0 to r-1 do
str := "";
for j from 1 to c do
if (f(c*i+j) mod s) = 0 then
str := cat(str,"D")
else
str := cat(str,"n")
end if
end do;
print(str)
end do
end proc; # s_div_f

and

proc(s::posint,r::posint,c::posint)
description
"Indicate divisibility of Fib(n) by m for n <= cr.",
"Write 'D' for divisible, else 'n'; r rows and c cols.";
---MORE STUFF HERE---
end proc; # s_div_fib

 

Hello everybody,

 

I would like to know if there's a possibility to change the style of the errorbars in errorplot. I would espacially like to add short lines at both ends of each errorbar, orthogonal to those, similiar to the looks of errorbars in GNUplot.

 

I appreciate your help. Many thanks in advance!

InputMatrix3aa := Matrix(3, 3, {(1, 1) = xx, (1, 2) = 283.6, (1, 3) = 285.4, (2, 1) = 283.6, (2, 2) = 285.4, (2, 3) = 0, (3, 1) = 285.4, (3, 2) = 0, (3, 3) = 0});
InputMatrix3 := Matrix(3, 3, {(1, 1) = 283.6, (1, 2) = 285.4, (1, 3) = 283.0, (2, 1) = 285.4, (2, 2) = 283.0, (2, 3) = 0, (3, 1) = 283.0, (3, 2) = 0, (3, 3) = 0});
InputMatrix3b := Matrix(3, 3, {(1, 1) = 285.4, (1, 2) = 283.0, (1, 3) = 287.6, (2, 1) = 283.0, (2, 2) = 287.6, (2, 3) = 0, (3, 1) = 287.6, (3, 2) = 0, (3, 3) = 0});
InputMatrix3c := Matrix(3, 3, {(1, 1) = 283.0, (1, 2) = 287.6, (1, 3) = 296.6, (2, 1) = 287.6, (2, 2) = 296.6, (2, 3) = 0, (3, 1) = 296.6, (3, 2) = 0, (3, 3) = 0});
InputMatrix3d := Matrix(3, 3, {(1, 1) = 287.6, (1, 2) = 296.6, (1, 3) = 286.2, (2, 1) = 296.6, (2, 2) = 286.2, (2, 3) = 0, (3, 1) = 286.2, (3, 2) = 0, (3, 3) = 0});

Old_Asso_eigenvector0 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa)):
Old_Asso_eigenvector1 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
Old_Asso_eigenvector2 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3b), InputMatrix3b)):
Old_Asso_eigenvector3 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3c), InputMatrix3c)):
Old_Asso_eigenvector4 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3d), InputMatrix3d)):

#AA2 := MatrixMatrixMultiply(Old_Asso_eigenvector3[2], MatrixInverse(Old_Asso_eigenvector2[2]));
#AA3 := MatrixMatrixMultiply(Old_Asso_eigenvector4[2], MatrixInverse(Old_Asso_eigenvector3[2]));

AA2 := MatrixMatrixMultiply(Old_Asso_eigenvector2[2], MatrixInverse(Old_Asso_eigenvector1[2]));
AA3 := MatrixMatrixMultiply(Old_Asso_eigenvector3[2], MatrixInverse(Old_Asso_eigenvector2[2]));

sol11 := solve([Re(AA2[1][1]) = sin(m*2+phi), Re(AA3[1][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol11) > 1 then
sol11 := sol11[1];
end if:
sin(rhs(sol11[1])+rhs(sol11[2]));

sol12 := solve([Re(AA2[1][2]) = sin(m*2+phi), Re(AA3[1][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol12) > 1 then
sol12 := sol12[1];
end if:
sin(rhs(sol12[1])+rhs(sol12[2]));

sol13 := solve([Re(AA2[1][3]) = sin(m*2+phi), Re(AA3[1][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol13) > 1 then
sol13 := sol13[1];
end if:
sin(rhs(sol13[1])+rhs(sol13[2]));

#*************************************
sol21 := solve([Re(AA2[2][1]) = sin(m*2+phi), Re(AA3[2][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol21) > 1 then
sol21 := sol21[1];
end if:
sin(rhs(sol21[1])+rhs(sol21[2]));

sol22 := solve([Re(AA2[2][2]) = sin(m*2+phi), Re(AA3[2][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol22) > 1 then
sol22 := sol22[1];
end if:
sin(rhs(sol22[1])+rhs(sol22[2]));

sol23 := solve([Re(AA2[2][3]) = sin(m*2+phi), Re(AA3[2][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol23) > 1 then
sol23 := sol23[1];
end if:
sin(rhs(sol23[1])+rhs(sol23[2]));

#**************************************
sol31 := solve([Re(AA2[3][1]) = sin(m*2+phi), Re(AA3[3][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol31) > 1 then
sol31 := sol31[1];
end if:
sin(rhs(sol31[1])+rhs(sol31[2]));

sol32 := solve([Re(AA2[3][2]) = sin(m*2+phi), Re(AA3[3][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol32) > 1 then
sol32 := sol32[1];
end if:
sin(rhs(sol32[1])+rhs(sol32[2]));

sol33 := solve([Re(AA2[3][3]) = sin(m*2+phi), Re(AA3[3][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol33) > 1 then
sol33 := sol33[1];
end if:
sin(rhs(sol33[1])+rhs(sol33[2]));

#****************************************************

AAA1 := Matrix([[sin(rhs(sol11[1])+rhs(sol11[2])),sin(rhs(sol12[1])+rhs(sol12[2])),sin(rhs(sol13[1])+rhs(sol13[2]))],[sin(rhs(sol21[1])+rhs(sol21[2])),sin(rhs(sol22[1])+rhs(sol22[2])),sin(rhs(sol23[1])+rhs(sol23[2]))],[sin(rhs(sol31[1])+rhs(sol31[2])),sin(rhs(sol32[1])+rhs(sol32[2])),sin(rhs(sol33[1])+rhs(sol33[2]))]]);

MA := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - lambda*IdentityMatrix(3):
eignvalues1 := evalf(solve(Determinant(MA), lambda)):
MA1 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[1]*IdentityMatrix(3):
MA2 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[2]*IdentityMatrix(3):
MA3 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[3]*IdentityMatrix(3):
eigenvector1 := LinearSolve(MA1,<x,y,z>):
eigenvector2 := LinearSolve(MA2,<x,y,z>):
eigenvector3 := LinearSolve(MA3,<x,y,z>):

MR := MatrixMatrixMultiply(AAA1, Matrix([[Re(eigenvector1[1]),Re(eigenvector2[1]),Re(eigenvector3[1])],[Re(eigenvector1[2]),Re(eigenvector2[2]),Re(eigenvector3[2])],[Re(eigenvector1[3]),Re(eigenvector2[3]),Re(eigenvector3[3])]]));
ML := Re(Old_Asso_eigenvector1[2]);

solve(ML[1][1] = MR[1][1], xx);
with(Optimization):
Minimize(ML[1][1] - MR[1][1], {0 <= xx}, assume = nonnegative);

Error, (in Optimization:-NLPSolve) abs is not differentiable at non-real arguments;

when one of element in matrix s variable below code is very slow

 

MA := MatrixMatrixMultiply(InputMatrix3aa - lambda*IdentityMatrix(3);
eignvalues1 := evalf(solve(Determinant(MA), lambda));
MA1 := MatrixMatrixMultiply(InputMatrix3aa - eignvalues1[1]*IdentityMatrix(3);
MA2 := MatrixMatrixMultiply(InputMatrix3aa - eignvalues1[2]*IdentityMatrix(3);
MA3 := MatrixMatrixMultiply(InputMatrix3aa - eignvalues1[3]*IdentityMatrix(3);
eignvector1 := LinearSolve(MA1,<x,y,z>);

eignvector2 := LinearSolve(MA2,<x,y,z>);

eignvector3 := LinearSolve(MA3,<x,y,z>);

hw2_unfinished.mw

There is something wroung with the t0.

How to correct it?

Why the interface typesettings option doesn't affect the content of a MathContainer?

I opened a new document. Then I inserted the command interface(typesetting=extended); to improve the visualization of a disequation's solution. It works in the worksheet, but it doesn't work in the content of a MathContainer.

Hello! I have written a algorithm. Can you help me find errors? thank you very much. sorry, my English is not very good!

LL:=proc(A::Matrix)
uses LA= LinearAlgebra;
local i, j, k, n:= LA:-RowDimension(A),
L:= Matrix(LA:-Dimensions(A));
L[1,1]:=sqrt(A[1,1]);
for j from 2 to n do
L[j,1]:=(A[j,1])/(L[1,1]);
end do;
for i from 2 to n-1 do
L[i,i]:=(A[i,i]-add(L[i,k]^(2),k=1..i-1))^(1/(2));
for j from i+1 to n do
L[j,i]:=(1/L[i,i])*(A[j,i]-add(L[j,k]*L[i,k],k=1..i-1));
end do;
end do;
L[n,n]:=(A[n,n]-add((L[n,k])^(2),k=1..n-1)^(1/(2));
L;

I want to know the mistakes i have made in the documents attached to get the expected results every time.

NULL

Case 1: control = works fine now.

M1 := K__1*A*(Matrix(2, 2, {(1, 1) = 1, (1, 2) = -1, (2, 1) = -1, (2, 2) = 1}))/l__1 = Matrix(2, 2, {(1, 1) = 0.30e-2, (1, 2) = -0.30e-2, (2, 1) = -0.30e-2, (2, 2) = 0.30e-2})

NULL

NULL

Case 2: control = prints answer in next line.M1 := K__1*A*(Matrix(2, 2, {(1, 1) = 1, (1, 2) = -1, (2, 1) = -1, (2, 2) = 1}))/l__1 = Matrix([[K__1*A/l__1, -K__1*A/l__1], [-K__1*A/l__1, K__1*A/l__1]]) = Matrix(2, 2, {(1, 1) = 0.300000000000000e-2, (1, 2) = -0.300000000000000e-2, (2, 1) = -0.300000000000000e-2, (2, 2) = 0.300000000000000e-2})

NULL

control = prints expression and answer in the next line.

case 3

M1 := K__1*A*(Matrix(2, 2, {(1, 1) = 1, (1, 2) = -1, (2, 1) = -1, (2, 2) = 1}))/l__1 = Matrix([[K__1*A/l__1, -K__1*A/l__1], [-K__1*A/l__1, K__1*A/l__1]]) = Matrix(2, 2, {(1, 1) = 0.300000000000000e-2, (1, 2) = -0.300000000000000e-2, (2, 1) = -0.300000000000000e-2, (2, 2) = 0.300000000000000e-2})

NULL

Numeric formating does not function in case2 and cae 3. I dont know shat hv i done for these things to occur. But what should i do?

NULL

 

Download onlineResultandNumeric_format_doesnot_work_in_some_casesWhy.mwonlineResultandNumeric_format_doesnot_work_in_some_casesWhy.mw

Ramakrishnan V

rukmini_ramki@hotmail.com

Hello,

 I am trying to solve an differential equation in Maple, but I have no response from Maple.Can someone give a look for me? The coefficients a and b cannot be zero.

 Thanks a lot.

 

Download edo_solução_A_U.mw

First 185 186 187 188 189 190 191 Last Page 187 of 2223