Andiguys

75 Reputation

5 Badges

1 years, 116 days

MaplePrimes Activity


These are questions asked by Andiguys

While solving for i1 encounter too many terms. How can I simplify it so that only " Pn,Pr and w" remain, with all other variables grouped into constants, so that the equation for the optimal i1​ becomes small and manageable?
 

restart

kernelopts(version)

`Maple 2019.1, X86 64 WINDOWS, May 21 2019, Build ID 1399874`

(1)

Pi1 := (w-i1)*(1/2+(i1-i2)/(2*tau))*(1-(Pn-Pr)/(1-delta))+(s-i1-Crr)*(1/2+(i1-i2)/(2*tau))*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)+Ce*rho0*(((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)*eta+1-(Pn-Pr)/(1-delta))

(w-i1)*(1/2+(1/2)*(i1-i2)/tau)*(1-(Pn-Pr)/(1-delta))+(s-i1-Crr)*(1/2+(1/2)*(i1-i2)/tau)*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)+Ce*rho0*(((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)*eta+1-(Pn-Pr)/(1-delta))

(2)

diff(Pi1, i1) = 0

-(1/2+(1/2)*(i1-i2)/tau)*(1-(Pn-Pr)/(1-delta))+(1/2)*(w-i1)*(1-(Pn-Pr)/(1-delta))/tau-(1/2+(1/2)*(i1-i2)/tau)*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)+(1/2)*(s-i1-Crr)*((Pn-Pr)/(1-delta)-(-beta*i1*upsilon+Pr)/delta)/tau+(s-i1-Crr)*(1/2+(1/2)*(i1-i2)/tau)*beta*upsilon/delta+Ce*rho0*beta*upsilon*eta/delta = 0

(3)

solve(%, i1)

-(1/3)*(Crr*beta*delta*upsilon-beta*delta*i2*upsilon-beta*delta*s*upsilon+beta*delta*tau*upsilon-Crr*beta*upsilon+beta*i2*upsilon+beta*s*upsilon-beta*tau*upsilon-delta*Pr+delta^2-(6*Ce*beta^2*delta^2*eta*rho0*tau*upsilon^2-12*Ce*beta^2*delta*eta*rho0*tau*upsilon^2+6*Ce*beta^2*eta*rho0*tau*upsilon^2+Crr^2*beta^2*delta^2*upsilon^2+Crr*beta^2*delta^2*i2*upsilon^2-2*Crr*beta^2*delta^2*s*upsilon^2-Crr*beta^2*delta^2*tau*upsilon^2+beta^2*delta^2*i2^2*upsilon^2-beta^2*delta^2*i2*s*upsilon^2-2*beta^2*delta^2*i2*tau*upsilon^2+beta^2*delta^2*s^2*upsilon^2+beta^2*delta^2*s*tau*upsilon^2+beta^2*delta^2*tau^2*upsilon^2-2*Crr^2*beta^2*delta*upsilon^2-2*Crr*beta^2*delta*i2*upsilon^2+4*Crr*beta^2*delta*s*upsilon^2+2*Crr*beta^2*delta*tau*upsilon^2-2*beta^2*delta*i2^2*upsilon^2+2*beta^2*delta*i2*s*upsilon^2+4*beta^2*delta*i2*tau*upsilon^2-2*beta^2*delta*s^2*upsilon^2-2*beta^2*delta*s*tau*upsilon^2-2*beta^2*delta*tau^2*upsilon^2+Crr^2*beta^2*upsilon^2+3*Crr*Pn*beta*delta^2*upsilon-2*Crr*Pr*beta*delta^2*upsilon+Crr*beta^2*i2*upsilon^2-2*Crr*beta^2*s*upsilon^2-Crr*beta^2*tau*upsilon^2+2*Crr*beta*delta^3*upsilon-3*Pn*beta*delta^2*s*upsilon+3*Pn*beta*delta^2*upsilon*w-Pr*beta*delta^2*i2*upsilon+2*Pr*beta*delta^2*s*upsilon+Pr*beta*delta^2*tau*upsilon-3*Pr*beta*delta^2*upsilon*w+beta^2*i2^2*upsilon^2-beta^2*i2*s*upsilon^2-2*beta^2*i2*tau*upsilon^2+beta^2*s^2*upsilon^2+beta^2*s*tau*upsilon^2+beta^2*tau^2*upsilon^2+beta*delta^3*i2*upsilon-2*beta*delta^3*s*upsilon-beta*delta^3*tau*upsilon+3*beta*delta^3*upsilon*w-3*Crr*Pn*beta*delta*upsilon+Crr*Pr*beta*delta*upsilon-4*Crr*beta*delta^2*upsilon+3*Pn*beta*delta*s*upsilon-3*Pn*beta*delta*upsilon*w+2*Pr*beta*delta*i2*upsilon-Pr*beta*delta*s*upsilon-2*Pr*beta*delta*tau*upsilon+3*Pr*beta*delta*upsilon*w-2*beta*delta^2*i2*upsilon+4*beta*delta^2*s*upsilon+2*beta*delta^2*tau*upsilon-6*beta*delta^2*upsilon*w+Crr*Pr*beta*upsilon+2*Crr*beta*delta*upsilon+Pr^2*delta^2-Pr*beta*i2*upsilon-Pr*beta*s*upsilon+Pr*beta*tau*upsilon-2*Pr*delta^3+beta*delta*i2*upsilon-2*beta*delta*s*upsilon-beta*delta*tau*upsilon+3*beta*delta*upsilon*w+delta^4-2*Pr^2*delta+4*Pr*delta^2-2*delta^3+Pr^2-2*Pr*delta+delta^2)^(1/2)+Pr-delta)/(beta*upsilon*(-1+delta)), -(1/3)*(Crr*beta*delta*upsilon-beta*delta*i2*upsilon-beta*delta*s*upsilon+beta*delta*tau*upsilon-Crr*beta*upsilon+beta*i2*upsilon+beta*s*upsilon-beta*tau*upsilon-delta*Pr+delta^2+(6*Ce*beta^2*delta^2*eta*rho0*tau*upsilon^2-12*Ce*beta^2*delta*eta*rho0*tau*upsilon^2+6*Ce*beta^2*eta*rho0*tau*upsilon^2+Crr^2*beta^2*delta^2*upsilon^2+Crr*beta^2*delta^2*i2*upsilon^2-2*Crr*beta^2*delta^2*s*upsilon^2-Crr*beta^2*delta^2*tau*upsilon^2+beta^2*delta^2*i2^2*upsilon^2-beta^2*delta^2*i2*s*upsilon^2-2*beta^2*delta^2*i2*tau*upsilon^2+beta^2*delta^2*s^2*upsilon^2+beta^2*delta^2*s*tau*upsilon^2+beta^2*delta^2*tau^2*upsilon^2-2*Crr^2*beta^2*delta*upsilon^2-2*Crr*beta^2*delta*i2*upsilon^2+4*Crr*beta^2*delta*s*upsilon^2+2*Crr*beta^2*delta*tau*upsilon^2-2*beta^2*delta*i2^2*upsilon^2+2*beta^2*delta*i2*s*upsilon^2+4*beta^2*delta*i2*tau*upsilon^2-2*beta^2*delta*s^2*upsilon^2-2*beta^2*delta*s*tau*upsilon^2-2*beta^2*delta*tau^2*upsilon^2+Crr^2*beta^2*upsilon^2+3*Crr*Pn*beta*delta^2*upsilon-2*Crr*Pr*beta*delta^2*upsilon+Crr*beta^2*i2*upsilon^2-2*Crr*beta^2*s*upsilon^2-Crr*beta^2*tau*upsilon^2+2*Crr*beta*delta^3*upsilon-3*Pn*beta*delta^2*s*upsilon+3*Pn*beta*delta^2*upsilon*w-Pr*beta*delta^2*i2*upsilon+2*Pr*beta*delta^2*s*upsilon+Pr*beta*delta^2*tau*upsilon-3*Pr*beta*delta^2*upsilon*w+beta^2*i2^2*upsilon^2-beta^2*i2*s*upsilon^2-2*beta^2*i2*tau*upsilon^2+beta^2*s^2*upsilon^2+beta^2*s*tau*upsilon^2+beta^2*tau^2*upsilon^2+beta*delta^3*i2*upsilon-2*beta*delta^3*s*upsilon-beta*delta^3*tau*upsilon+3*beta*delta^3*upsilon*w-3*Crr*Pn*beta*delta*upsilon+Crr*Pr*beta*delta*upsilon-4*Crr*beta*delta^2*upsilon+3*Pn*beta*delta*s*upsilon-3*Pn*beta*delta*upsilon*w+2*Pr*beta*delta*i2*upsilon-Pr*beta*delta*s*upsilon-2*Pr*beta*delta*tau*upsilon+3*Pr*beta*delta*upsilon*w-2*beta*delta^2*i2*upsilon+4*beta*delta^2*s*upsilon+2*beta*delta^2*tau*upsilon-6*beta*delta^2*upsilon*w+Crr*Pr*beta*upsilon+2*Crr*beta*delta*upsilon+Pr^2*delta^2-Pr*beta*i2*upsilon-Pr*beta*s*upsilon+Pr*beta*tau*upsilon-2*Pr*delta^3+beta*delta*i2*upsilon-2*beta*delta*s*upsilon-beta*delta*tau*upsilon+3*beta*delta*upsilon*w+delta^4-2*Pr^2*delta+4*Pr*delta^2-2*delta^3+Pr^2-2*Pr*delta+delta^2)^(1/2)+Pr-delta)/(beta*upsilon*(-1+delta))

(4)

simplify(%)

Error, (in simplify/do) invalid simplification command

 
 

``

Download Q_Simplify.mw

I need to isolate i1​ and move the remaining terms to the other side. However, I’m encountering an error while doing this.

Note: All parameters are non-negative (positive or equal to zero).

Attaching sheet: Question_Isolate_i1.mw

I’m getting an error while solving the equations derived from the KKT conditions.
What syntax modifications should I make?
The decision variables are p1 and pr, with two constraints.

sheet: Q1_solve_equation.mw
 

In the 3D figure, the z-axis currently extends only to zero; please extend it to include positive values. Also help needed in setting the optimal point which is not clearly visible now—how to adjust the view and labeling to highlight only its z-value. How can we Improve the overall clarity and positioning of the figure to enhance visual readability.

Q_figure.mw

Download Q_figure.mw

Getting an error while solving. Can we get a condition like  delta ( > or <)  delta3 × constant?
Note: All parameters are positive and greater than zero.          tau, tau1, delta, delta3, delta0 are between 0 and 1. 

restart

``

ineq := (1-delta-tau1)*d*Cv+w*delta*d+Rm*tau1*d+s2*d*(delta0-delta-tau1)+g1*tau1^2*d^2+g2*delta^2*d^2 <= R0m*tau1^2*d^2+(1-delta[3]-tau1)*d*Cv+w*delta[3]*d+s2*d*(delta0-delta[3]-tau1)+g2*(delta[3]+tau1)^2*d^2

(1-delta-tau1)*d*Cv+w*delta*d+Rm*tau1*d+s2*d*(delta0-delta-tau1)+g1*tau1^2*d^2+g2*delta^2*d^2 <= R0m*tau1^2*d^2+(1-delta[3]-tau1)*d*Cv+w*delta[3]*d+s2*d*(delta0-delta[3]-tau1)+g2*(delta[3]+tau1)^2*d^2

(1)

NULL

``

temp := collect(ineq,delta);

g2*delta^2*d^2+(-Cv*d-d*s2+d*w)*delta+(1-tau1)*d*Cv+Rm*tau1*d+s2*d*(delta0-tau1)+g1*tau1^2*d^2 <= R0m*tau1^2*d^2+(1-delta[3]-tau1)*d*Cv+w*delta[3]*d+s2*d*(delta0-delta[3]-tau1)+g2*(delta[3]+tau1)^2*d^2

(2)

new := simplify(temp - remove(depends,lhs(temp),delta) - select(depends,rhs(temp),delta));

-d*(d*g2*delta[3]^2+(2*d*g2*tau1-Cv-s2+w)*delta[3]+(-delta^2*g2+g2*tau1^2)*d+(-w+Cv+s2)*delta+(-Cv-s2)*tau1+s2*delta0+Cv) <= -d*(d*(g1-R0m)*tau1^2+(-Cv+Rm-s2)*tau1+s2*delta0+Cv)

(3)

simplify(solve(new,delta));

Warning, solutions may have been lost

 

Error, invalid input: simplify uses a 1st argument, s, which is missing

 
 

NULL

Download Q_on_solve.mw

1 2 3 4 5 6 7 Page 1 of 8