vv

13922 Reputation

20 Badges

10 years, 10 days

MaplePrimes Activity


These are answers submitted by vv

odetest cannot work with such generalized series. But it is easy to test the solution directly: 

fsol:=series(rhs(maple_sol), x=0):
# series(eval(lhs(ode), y(x)=fsol), x);  # O(x^5)
map(series, map(eval, ode, y(x)=fsol), x)

          O(x^5) = 0

restart;

X,Y := t->5*cos(t), t->(5+sin(6*t))*sin(t):

with(plots):

P0:=plot([X,Y, 0..2*Pi], color=black):

T:=D(Y)/D(X): # the sloap of the tangent

K:=unapply(VectorCalculus:-Curvature(<X(t),Y(t)>),t):

tt[1],tt[2] := eval( [a,b], fsolve({T(a)-T(b), K(a)-K(b)}, {a, b}, {a=0..1, b=3..5}) )[];

.5465721754, 4.440166423

(1)

tt[3],tt[4] := eval( [a,b], fsolve({T(a)-T(b), K(a)-K(b)}, {a, b}, {a=2..2.5, b=3..6}) )[];

2.168601832, 3.704639334

(2)

tt[5],tt[6] := eval( [a,b], fsolve({T(a)-T(b), K(a)-K(b)}, {a, b}, {a=2.5..3, b=3..6}) )[];

2.845163972, 5.737842021

(3)

col:=[red$2,blue$2,green$2]:

curvatures=seq(K(tt[i]),i=1..6)

curvatures = (1.391345054, 1.391345047, 1.111111250, 1.111111261, 0.3791851261e-1, 0.3791851136e-1)

(4)

display(P0,
        seq( pointplot([[X(tt[i]),Y(tt[i])]], color=col[i]), i=1..6),
        seq( plot(T(tt[i])*(x-X(tt[i])) + Y(tt[i]), x=-40..40, color=col[i]), i=1..6),
        symbolsize=24, symbol=solidcircle, scaling=unconstrained, view=[-7..7,-7..7],gridlines=false
);

 

 


 

Download equal-sloap-curvature-vv.mw

The correct syntax for rsolve is:

sol := rsolve({f(n)=sin(f(n-1)), f(0)=a}, f(n));

(sin@@n)(a)

(1)

Unfortunately Maple cannot compute the following "classical" limit directly:

 

limit(sol*sqrt(n/3), n=infinity) assuming a>0,a<Pi;

limit((1/3)*(sin@@n)(a)*3^(1/2)*n^(1/2), n = infinity)

(2)

However, it can more than this: it is able to compute the asymptotic expansion!

 

asympt('rsolve'({f(0) = a, f(n) = sin(f(n - 1))}, f(n)), n);

3^(1/2)*(1/n)^(1/2)+(_C-(3/10)*3^(1/2)*ln(n))*(1/n)^(3/2)+O((1/n)^(5/2))

(3)

So, the limit is 1.

Note however that this is a generic result; for its validity we must add a condition e.g. 0<a, a<Pi.

Using the identity theorem, a very simple solution is possible:

u := sin(2*x)/(cosh(2*y) - cos(2*x)):
f:=eval(u, [y=0,x=z]) + I*C : # C = real constant
simplify(convert(f, cot));

        C*I + cot(z)

The idea is to expand in power series and then change the order of summation. After that, the limit will be simple.

restart;

f := k*t^k/(1-t^k); # without (1-t)^2

k*t^k/(1-t^k)

(1)

f := convert(eval(f, t^k=u), FPS, u) assuming k::posint

Sum(k*u^(n+1), n = 0 .. infinity)

(2)

f := (eval(%, u=t^k)) assuming k>0,t>0

Sum(k*(t^k)^(n+1), n = 0 .. infinity)

(3)

term := op(1,%)

k*(t^k)^(n+1)

(4)

F := Sum(sum((1-t)^2*term, k=1..infinity),n=0..infinity) assuming t>0,t<1;

Sum((t-1)^2*t^(n+1)/(t^(n+1)-1)^2, n = 0 .. infinity)

(5)

limit(F, t=1,left)

Sum(1/(n+1)^2, n = 0 .. infinity)

(6)

ans = value(%);

ans = (1/6)*Pi^2

(7)
 

 

Download lim_ser-vv.mw

Maple can guess the result:

s:=sum( arctan(2/n^2), n=1 .. infinity);
ans:=identify(evalf(s));
evalf[200](s - ans);  # check 200 digits, --> 0

                  

PS. Why don't you express the series in Maple, i.e.  sum( arctan(2/n^2), n=1 .. infinity) ?

PS2. Of course this is not a proof.  It is easy to obtain one in Maple, but only if the user knows it mathematically.
I omit it because you probably know it.

Maple cannot compute it, but it's easy with Stoltz-Cesaro theorem:

a:=n -> 2^n/n:
limit(a(n) / (a(n)-a(n-1)), n=infinity);

                    2

J:=Int(ln(x)*ln(1 - x), x = 0 .. 1);

Int(ln(x)*ln(1-x), x = 0 .. 1)

(1)

F2:=convert(ln(1-x), FPS);

Sum(-x^(n+1)/(n+1), n = 0 .. infinity)

(2)

J1:=Int(ln(x)*op(1,F2), x=0..1);

Int(-ln(x)*x^(n+1)/(n+1), x = 0 .. 1)

(3)

value(%) assuming n>=0; # by parts

1/((n+1)*(n+2)^2)

(4)

V1:=convert(%, parfrac);

-1/(n+2)+1/(n+1)-1/(n+2)^2

(5)

J = sum(V1, n=0..infinity);  # Easy to justify by dominated convergence

Int(ln(x)*ln(1-x), x = 0 .. 1) = 2-(1/6)*Pi^2

(6)


Download INT1-vv.mw

Try  (*.mw, not *.mpl):

interface(worksheetdir);

 

 1/(1 - x*y) = Sum( (x*y)^k, k=0 .. infinity );
Applying the double integral over (0,1)^2 implies (by monotone convergence):
 Int( 1/(1 - x*y), x=0..1, y=0..1 ) = Sum( 1/k^2, k =1 .. infinity );
==>  Int( 1/(1 - x*y), x=0..1, y=0..1 ) = Pi^2 / 6.

You have to use LinearAlgebra[Modular]:

restart
A:=Matrix(9,[
0,0,0,-1,1,-1,-1,0,0,
0,-1,0,1,-1,1,0,-1,-1,
0,0,-1,0,0,0,1,1,0,
0,1,0,-1,-1,1,-1,-1,0,
0,0,0,0,0,-1,1,0,-1,
0,0,0,0,0,-1,0,1,1,
0,0,1,-1,1,1,-1,-1,0,
0,0,0,0,0,1,1,-1,0,
0,0,0,0,0,0,0,0,0], datatype=integer[8]):
with(LinearAlgebra[Modular]):
Rank(3,A);
#                               7
B := Copy(3,A):
RowReduce(3,B,9,9,9,'det',0,'rank',0,0,true): B;

            

 

Edit. To obtain a basis for the nullspace explicitly, it is better to use:

with(LinearAlgebra[Modular]):
A1 := Copy(3,A):
r:=MatBasis(3, A1, 9, true): r,A1;
colonbasis, nullspacebasis:= A1[1..r, ..], A1[r+1.., ..];
colonbasis . nullspacebasis^+  mod 3; # check (==> 0 matrix)

OK, I'll take Z(t) = exp(int(y(u),u=0..t))

restart
eq1 := diff(x(t), t)-(1/6)*(6*x(t)^3*y(t)+(2*y(t)^2-2)*x(t)^2+3*y(t)*(z(t)-2)*x(t)-2*y(t)^2+2)*sqrt(3) = 0;
eq2 := diff(y(t), t)-(1/6)*(y(t)-1)*sqrt(3)*(y(t)+1)*(6*x(t)^2+2*y(t)*x(t)+3*z(t)-2) = 0;
eq3 := diff(z(t), t)-(1/3)*z(t)*sqrt(3)*(6*y(t)*x(t)^2+2*x(t)*y(t)^2+3*z(t)*y(t)-2*x(t)-3*y(t)) = 0;
eq4 := diff(s(t), t)-(1/3)*(y(t)-1)*sqrt(3)*(y(t)+1)*(6*x(t)^2+2*y(t)*x(t)+3*z(t)-2)*y(t) = 0;
eq5 := diff(Q(t), t)+sqrt(3)*((4/3-z(t)-2*x(t)^2)*y(t)+(2/3*(1-y(t)^2))*x(t))*Q(t)+2*((2/3)*y(t)+x(t))*P(t)/sqrt(3)-(2/3)*R(t) = 0;   
eq6 := diff(P(t), t)+(sqrt(3)*(1-z(t)-2*x(t)^2)*y(t)+2*(2-y(t)^2)*x(t)/sqrt(3))*P(t)+2*sqrt(3)*x(t)*Q(t)+(1/2)*R(t) = 0;       
eq7 := diff(R(t), t)-sqrt(3)*((3*x(t)^2+(3/2)*z(t)+4)*y(t)-(1/3*(1-3*y(t)^2))*x(t))*R(t)-z(t)*P(t) = 0;
eq8 := diff(T(t), t)-sqrt(3)*((6*x(t)^2+3*z(t)+1)*y(t)-(2*(1-y(t)^2))*x(t))*T(t)-(1-y(t)^2)*(Q(t)-(2/3)*P(t)) = 0;   

eq9 := diff(Z(t), t) = Z(t)*y(t);
syst := eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9;
ics := x(0) = .1, y(0) = .9, z(0) = .1, s(0) = .2, Q(0) = .1, P(0) = .9, R(0) = .1, T(0) = .2,  Z(0)=1;
sol1 := dsolve({ics, syst}, {P(t), Q(t), R(t), T(t), s(t), x(t), y(t), z(t), Z(t)}, type = numeric, output = operator);
sol1(0.5);
plots:-odeplot(sol1, [[t, y(t)], [t,Z(t)]], t=0..1, title="y and Z");
plots:-odeplot(sol1, [Z(t), y(t)], t=0..1, title="y vs Z");

      

Take the origin at A. Then the area a(t) of the triangle ABC is the absolute value of the determinant of <B,C>, so a(t) = |m t + n|.

We have a(0) = 2, a(5) = 3, a(10) = ?.
a(0)=2 implies n=±2, and a(5)=3 implies 5m+n=±3 so, a(10) = |10m+n| = |-n±6| = |n±6| ∈ {4,8}.

restart;
A := t->[a,sA+vA*t]: B := t->[b,sB+vB*t]: C := t->[c,sC+vC*t]:
area:= t->abs(LinearAlgebra:-Determinant(Matrix([[A(t)[],1],[B(t)[],1],[C(t)[],1]])))/2:
sols := solve([area(0)=2, area(5)=3, area(10)=AREA]):
AREA in {seq}( eval(AREA, sol), sol=sols);

                AREA  ∈  {4, 8}

(so, 2 solutions, AREA=4 and AREA=8).
Nice problem BTW.

p:=unapply(LinearAlgebra:-CharacteristicPolynomial(A,x), x):
[seq]( simplify(p(evstheory[i])), i=1 .. L^2); nops(%);

        [0, 0, ... , 0]
        81

but very SLOW!

1 2 3 4 5 6 7 Last Page 3 of 120